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ABSTRACT 

Although increasing attention is being given to the problem of representing 
uncertainty in database systems, very little work has been done on methods for 
representing the evidential arguments that underlie assessments of uncer- 
tainty. Yet understanding and manipulating such arguments are essential to 
the intelligence analyst's tasks of making sense out of unreliable and incon- 
sistent data and communicating conclusions. 

A critical review of current approaches to modeling uncertainty suggests that 
the following themes have the most bearing on the design of systems to support 
intelligence analysis: the adequate representation of alternative types of 
uncertainty, especially the reliability and completeness of arguments (in con- 
trast to other concepts such as chance and "fuzziness"); the role of assump- 
tions and assumption-revision in reasoning and conflict resolution; and the 
structure, components, and relevant characteristics of arguments based on 
evidence. 

A system design is proposed, called The Self-Reconciling Evidential Database 
(SED), which addresses these problems: (a) by providing a generic schema for 
an evidential argument based on qualitative causal models that link conclu- 
sions and evidence; (b) by permitting the analyst to investigate different 
representations of the same argument through adoption and revision of 
assumptions; and (c) by embedding evidential arguments within a higher-level 
"metareasoning" process that responds to conflict between different lines of 
argument by tracing the assumptions involved in the conflict and recommending 
revisions. 
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1.0 INTRODUCTION 

1.1 The Problem 

In recent years, efforts to improve the quality of U.S. intelligence assess- 

ments have focused less exclusively than before on the development and deploy- 

ment of technical data collection methods, such as satellites and sensors. 

There is a growing awareness that the success of intelligence activities is at 

least equally dependent on the processes of interpretation and inference that 

take place after the data have been collected, which extract their sig- 

nificance for policy and in many cases prompt and guide the collection of new 

data. A major goal of the work reported here is to explore ways in which sup- 

port can be provided for the processes by which intelligence data are managed 

and analyzed. 

A pervasive aspect of those processes is the handling of uncertainty. In a 

recent report (Cohen, Schum, Freeling, and Chinnis, 1985), we began by arguing 

that, "in a given analytic problem, identifying sources of uncertainty, as- 

sessing the amount of uncertainty from each source, and combining uncertainty 

across sources to make a final judgment are the most crucial, and perhaps the 

most difficult, components of the analysis." The appropriate handling of un- 

certainty plays a central role both in the analyst's own understanding of the 

problem and in his communication of it to others. If support is to be 

provided for the analytical task, there is ample reason to target such support 

here. 

1.2 Overview 

This report is divided into two relatively self-contained major sections. 

Section 2.0 is a critical and selective review of current approaches to model- 

ing uncertainty. It focuses on a relatively small set of issues which seem to 

have the most bearing on the design of systems to support intelligence 

analysis: i.e., the adequate representation of alternative types of uncer- 

tainty, especially the reliability and completeness of arguments (in contrast 

to other concepts such as chance and "fuzziness"); the role of assumptions and 
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assumption-revision in reasoning and conflict resolution; and the structure, 

components, and relevant characteristics of arguments based on evidence. Sec- 

tion 2.0 lays the intellectual groundwork for the conceptual design of a sys- 

tem which is described in Section 3.0. 

Section 3.0 introduces the Self-Reconciling Evidential Database (SED). In es- 

sence, the system has three layers: (1) qualitative causal modeling of the 

relationships between evidence and conclusions; (2) Shafer/Dempster measures 

of belief to capture uncertainty about the validity of causally based 

arguments; and (3) an iterative process of conflict resolution in which as- 

sumptions pertaining to the causal model are reexamined, tested, and revised. 

The components fit together into an interdependent whole. Thus, belief func- 

tion measures are especially appropriate for assessing the validity of eviden- 

tial arguments and are themselves clarified by the causal nature of the under- 

lying models. At the same time, belief functions provide natural ways to rep- 

resent assumptions and to measure conflict, essential ingredients in the con- 

flict resolution process. 

Section 4.0 summarizes conclusions and attempts to bring together some of the 

themes of Sections 2.0 and 3.0. Appendix A describes the algorithms utilized 

by SED in detail. Appendix B provides a derivation of some relevant results 

in the theory of belief functions. Finally, Appendix C critically reviews 

some of the recent work by others on the representation of uncertainty in 

database systems. 



2.0 MODELS OF UNCERTAINTY: THEORETICAL FOUNDATIONS FOR A 

SELF-RECONCILING EVIDENTIAL DATABASE 

In this section we identify and evaluate a number of theories regarding the 

representation and manipulation of uncertain data. The present discussion 

focuses on issues and ideas that shaped the design of the Self-Reconciling 

Evidential Database. It thus provides the historial and intellectual context 

for ideas that will be laid out more fully in Section 3.0. Most of the prin- 

ciple concepts of the Self-Reconciling Evidential Database, along with their 

motivation, are here touched on and defended in the context of on-going 

theoretical debate about uncertainty and reasoning. Additional discussion of 

theories of uncertainty can be found in Cohen et al. (1986) and Cohen et al. 

(1985). 

The following ideas are most central to our discussion: 

(1) focusing on the meaning and reliability of arguments which link 
evidence and hypothesis; 

(2) increasing the precision or certainty of an argument by making ex- 
plicit assumptions; 

( 3 )  resolving conflict among competing arguments by tracing and revis- 
ing the assumptions that led to the conflict; 

(4) providing a natural structure for representing the components of 
an argument; and 

(5) identifying features of each component which form the basis for 
assumptions and which affect the reliability of the argument. 

While most of these topics have attracted attention in isolation, we know of 

no serious attempts to integrate them within a single framework of reasoning. 

We will argue that the affinities among the topics are deep; each of them ad- 

dresses, in a different but complementary way, the problem of justifying 

belief rather than merely quantifying it. And they support a process of 

resolving conflict that delves into the reasons for the conflict, and attempts 

to rectify them, rather than imposing (as in the Bayesian tradition) a mere 

statistical aggregation. A system which combines these elements may provide a 

more powerful and at the same time more transparent approach to the repre- 

sentation of uncertainty in intelligence databases. 



A core idea of recent theorizing in this field has been completeness of 

evidence or reliability of an argument. A secondary theme of this section 

concerns shortcomings of traditional probabilistic attempts to capture that 

notion. This is not to deny the utility of Bayesian probability theory: 

indeed, a Bayesian analysis might well be the basis of an argument whose 

reliability needs to be considered. 

A final theme concerns the representation of imprecise or fuzzy beliefs, and 

the potential contribution of fuzzy set theory. 

2.1 Bavesian Probability Theorv 

Bayesian probability theory is a strong contender for the central role in any 

system which represents and manipulates uncertainty. Its supporters date back 

to work on "probabilistic information processing" (see Edwards, 1966) and 

earlier; more recent contributors have been de Dombal (1973), in the field of 

medical decision making, and Schum (1980) in the intelligence field. Our 

focus in this discussion, however, will be on some shortcomings in Bayesian 

theory that bear on its use in evaluating an evidential argument. 

A simple example can illustrate important features of Bayesian probabilistic 

reasoning. Consider an uncertain hypothesis, e.g., that "Country X has built 

a nuclear device." We call this hypothesis H. Under Bayesian theory, uncer- 

tainty about H would be represented by assigning a number between 0 and 1. 

This number, Pr(H), reflects one's degree of belief about H: Pr(H)=.9 means 

we are fairly sure of H; Pr(H)=.l means H is unlikely. 

The essence of Bayesian inference is the representation of a probability of 

interest, e.g., Pr(H), in terms of the probabilities of other hypotheses which 

are easier to assess. Thus, Pr(H) can be computed from these other probabil- 

ities rather than directly assessed. There are a variety of ways to express a 

given probability in terms of other probabilities, but the most familiar in 

Bayesian theory is "updating" by means of Bayes' Theorem. In the above ex- 

ample, suppose we obtain some evidence about H, e.g., a report from Agent Z 

that materials from a nuclear reactor in country X have been diverted by the 

government. Let us call this evidence D. The implications of datum D for the 
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relative likelihood of H and its complement, H (not H), are given by applica- 

tion of Bayes' Theorem (here shown in odds-likelihood form): 

The first ratio to the right of the "=" is the "likelihood ratio", and 

reflects the impact of D on the probability of H; the second ratio is the 

"prior odds" of H, before observing D. For example, if our initial belief is 

that H and not -H are equally likely (Pr (H) = PK (R) = .5) , then our prior odds 
equal 1. If we judge that D is 8 times as likely if H is true than if not-H 

is true, then our likelihood ratio is 8. Multiplying 8 by 1 gives a posterior 

odds of 8, which implies a posterior probability Pr(H1D) of 8/(8+1) = .89. 

Bayesian updating can be extended in a number of ways. First, the number of 

hypotheses can be increased to encompass any mutually exclusive set. For ex- 

ample, we might choose to discriminate further among the cases in which H is 

not true; e.g., we might consider three possibilities: HI, that country X has 

built a nuclear device; H2, country X will have the capability of building a 

device within 5 years; H3, country X will not have the capability within 5 

years. Second, the impact of additional evidence can be quantified, and the 

probability of the hypothesis further updated. For example, suppose agent W 

reports overhearing conversations in which scientists from country X discussed 

the technical difficulty of building a nuclear device. Thirdly, Bayes' 

Theorem can be applied in cases where the impact of evidence on the hypotheses 

of interest is mediated by other hypotheses (Pearl, 1986; Barclay et al., 

1977; Peterson et al., 1976; Schum, 1980). For example, our first item of 

evidence, Agent Z's report of diversion of nuclear material, bears on H in- 

directly, y& the intermediate hypothesis that nuclear material was in fact 

diverted, i.e., that Agent Z is honest and accurate. Fourth, hierarchical in- 

ference structures can be built which are able to accommodate a number of ways 

that different items of evidence can be related to one another with respect to 

hypotheses (Schum and Martin, 1980): e.g., they may be contradictory 

(reporting and denying the same intermediate event), corroboratively redundant 

(reporting the same intermediate event), cumulatively redundant (reporting 

different events which reduce one another's evidential impact on the ultimate 

hypotheses), or non-redundant (reporting different events which enhance or do 

not change one another's evidential impact). In other, more complex cases of 



interdependence, Bayesian techniques capture the evidential impact of biases 

or "noise" in an information source or other element in the network, or non- 

independence of information source reliability with respect to what is being 

observed. 

Not surprisingly, applications of Bayesian probability theory to real in- 

ference problems are typically quite complex. In all but the most trivial 

cases, a proper Bayesian analysis requires the assessment of a great many con- 

ditional probabilities. Moreover, the relations between them are difficult to 

organize, and the coherence of the total set of assessments is often difficult 

to determine. Although simplifying assumptions can reduce the assessment bur- 

den, the judgments of whether such assumptions are justified may themselves be 

quite subtle. Typically, model-building is an 
ib 

tive process, in which 

simplifying assumptions are made, conclusions are derived and checked for 

plausibilityi &,) u r n p h i  ad-3 * 

A more serious problem concerns the unnaturalness of some of the assessments 

that are required in a Bayesian analysis. In the example above, judgments are 

required regarding the probability of observing a piece of evidence, D, given 

the hypotheses, H and R; such judgments must be made in a counterfactual frame 
of mind, as if the datum D had not yet in fact been observed. Further, for 

most types of evidence, this probability is extremely small; and judgments, 

even of likelihood ratios, are likely to be quite unreliable. 

An alternative way of representing Pr(H) in terms of other probabilities, 

which avoids these problems, involves the "law of total probability": 

Here, H is once again a hypothesis of interest (e.g., "Country X has built a 

nuclear device"), and A is some conditioning event whose truth or falsity af- 

fects the probability of H, e.g., A = "Country X has diverted nuclear 

material" ; = "Country X has not diverted nuclear material. " In other words, 

the probability of H equals the probability of A times the probability of H 

given that A occurs plus the probability of not-A times the probability of H 

given that not-A occurs. While in some cases these assessments may be more 

natural, this form of analysis offers no simple measure, like the likelihood 



ratio, for assessing the separate impact of each new item of evidence (e.g., 

the impact of Agent Z's report on Pr(H)). 

Axiomatic derivations of Bayesian probability theory from certain desirable 

properties of beliefs (e.g., deFinetti, 1937/1964) have given the theory a 

pre-eminent claim to validity among current approaches to handling uncer- 

tainty. For example, it can be shown that unless one's beliefs obey the prob- 

ability axioms, one may be subject to a "Dutch book," i.e., a gamble in which 

one loses regardless of the outcome of an uncertain state of affairs. Such 

demonstrations, however, do not conclusively rule out alternative formula- 

tions. First, they invariably make technical assumptions that are not com- 

pelling (e.g., that belief is measured by a single number rather than an 

interval). Secondly, such foundational arguments do not establish that 

Bayesian theory is uniquely justified, since other theories may possess 

desirable properties that Bayesian probability theory lacks. We shall con- 

sider one such property, the ability to represent ignorance, later in this 

section. 

The thrust of Bayesian analysis is to improve, rather than replicate, ordinary 

thinking. Bayesians argue that if one's ordinary intuitions are probabil- 

istically incoherent, they ought to be changed. In other words, the 

plausibility of the axioms should outweigh the initial plausibility of an in- 

coherent set of judgments. The problem here, though, is two-fold: (1) al- 

though the theory demands coherence, it provides no guidance as to which judg- 

ments of an incoherent set should be changed; and (2) it is not clear why the 

plausibility of a highly abstract and technical set of axioms should always 

outweigh probabilistic judgment about concrete states of affairs. 

\ 

It is sometimes implied that a Bayesian analysis is simply a matter of select- 

ing a model, eliciting the required inputs, and calculating the answer. On 

the contrary, we argue that applying the theory is inevitably an iterative, 

bootstrapping operation. We use the theory, as if it were true, to perform an 

analysis, and then test the results for consistency with our direct judgment 

or with the results of other analyses. If we find inconsistency, we may 

choose to revise our direct judgment, or to revise the values in one or more 

analyses to make them consistent. In other words, we construct a probability 

model for our beliefs rather than elicit or confirm a pre-existing one. 



Moreover, we would argue, implausible results might in some cases persuade us 

to adopt a non-Bayesian approach to an inference problem. 

Bayesian theory is designed to capture the concept of chance, or uncertainty 

about facts. Bayesian theory fails to deal adequately with a quite different 

type of uncertainty: i.e., the amount and reliability of the knowledge under- 

lying an analysis. In our example above, we began with Pr(H) = Pr(not-H) = 

.5, reflecting simple ignorance prior to the consideration of evidence. But 

it might happen that after careful integration of a large quantity of 

(conflicting) information, the probability of H returns to .5. The single 

number .5, therefore, does not indicate the degree to which knowledge has been 

brought to bear on the problem. Similarly, in a Bayesian analysis, a quite 

high probability might be arrived at based on only a very limited sampling of 

data (e.g., Pr(H) = .89 after consideration of datum D). A high probability, 

therefore, means that the available evidence favors H over not-H; it tells us 

nothing about how complete or reliable the available evidence is. Probabil- 

ities, therefore, whether high or low, tell us nothing about the quality or 

goodness of the analysis, in the usual sense of those words. 

One result of the failure to represent the amount or type of knowledge under- 

lying a probabilistic assessment is the inability, in Bayesian theory, to 

provide guidance as to which probabilistic beliefs to revise in reconciling 

alternative, conflicting assessments (e.g., the result of using Bayes' Theorem 

may differ from an analysis based on the Law of Total Probability, and both 

may differ from direct judgment). According to Bayesian theory, all such 

analyses are based on all the available evidence; hence, they cannot be 

evaluated in terms of the amount of knowledge they successfully capture. 

A second result of this failure is a theoretical incoherence in the notion of 

prior probabilities. Prior probabilities are assessed as if the data under 

consideration had not been obtained, and are then updated by means of the rule 

(Bayes' Theorem) discussed above. Prior probabilities are often taken to rep- 

resent complete ignorance about the hypotheses in question. The most common 

device for handling such ignorance is to assign equal probabilities to all the 

hypotheses (e. g. , Pr(H) = pr(R) = .5). Unfortunately, there is always more 

than one way to assign "equal" probabilities, viz., by rescaling a continuous 

variable or regrouping discrete hypotheses. Recall in our example that not-H 



can be broken down into H2 (Country X will have the capability in 5 years) and 

H3 (it will not). Thus we can argue by ignorance that P(H) = P(H2) = P(H3) - 
1/3. Yet our previous argument, also based on ignorance, concluded that 

P(H) - .5. "Informationless priors" are thus not unique, and the choice of a 

particular representation of the hypothesis set can significantly affect the 

outcome of a Bayesian analysis. 

A superficially persuasive reply is to reject the idea of assigning vacuous 

"equal" prior probabilities, on the grounds that we are never totally ignorant 

as long as the hypotheses are meaningful, and that priors, therefore, should 

always reflect some knowledge. There are two problems with this reply. (1) 

Let us grant that priors for meaningful hypotheses must reflect at least some 

knowledge of the language and of the problem area. In other words, if we are 

concerned about a hypothesis H and we understand H, then our prior probability 

for H must be implicitly conditioned on a body of knowledge K: i.e., Pr(H1K). 

It does not follow that K reflects knowledge bearing on the t r u t h  of the 

hypothesis. Yet only the latter kind of knowledge eliminates the arbitrari- 

ness of assessing prior probabilities. (2) Nevertheless, let us grant for the 

moment that we always have some knowledge bearing on the truth of the 

hypothesis. Even so, the conclusion (that priors  always reflect some of this 

kind of knowledge) does not follow. An "informationless prior" can be ex- 

tracted from a prior that embodies knowledge by decomposing that prior into 

elements that do embody relevant knowledge and elements which do not. In 

other words, it should sometimes be possible, at least in principle, to divide 

K into a set K1 of beliefs that we judge does not bear on the truth of H but 

which is sufficient to make H meaningful (e.g., much if not all of our 

knowledge of the English language) and a set of beliefs K2 that (in conjunc- 

tion with K1) we judge does bear on the truth of H. Then we can (in 

principle) treat K2 as evidence in a Bayesian updating scheme. In that case, 

we get Pr (H I K1, K2)aPr (H I K1) Pr (K2 1 H , K1) . Pr (H I K1) must be regarded as an 
"informationless prior" since K1 is sufficient to render H meaningful, but has 

no impact on our beliefs about the t r u t h  of H. Assessment of Pr(H(K1) thus 

cannot escape the difficulties discussed above regarding arbitrariness and 

non-uniqueness. 

The upshot of this argument is n o t  that "informationless priors" must ever be 

assessed i n  prac t i ce .  We can, after all, simply decline to decompose Pr(H1K) 



the way just described. The argument points, rather, to a more fundamental 

theoretical difficulty: that Bayesian theory implies the intelligibility of 

certain judgements which are in fact arbitrary and non-unique. This finding 

weakens the normative basis of the theory. 

An interesting recent defense of Bayesian priors is provided by Cheeseman 

(1985), who argues that while an understanding of the problem may not yield 

information bearing on the truth of hypotheses, it typically yields invariance 

requirements on the answer, and these imply a definite partition (i.e., group- 

ing or scaling) of the hypotheses. In the absence of further information, 

equal priors should then be assessed for that partition. Cheeseman appears to 

recommend an attitude toward prior probabilities that regards them not as 

beliefs, but as assumptions, subject to revision when new information 

(implying new invariance requirements) dictates a different partitioning. For 

example, if we are asked to give the probability of finding a ship within a 

particular square mile in the Atlantic, invariance (with respect to transla- 

tions, rotations, transformations of scale?) requires assigning equal prob- 

ability to equal areas. "Since the Atlantic is roughly diamond shaped, this 

means that the probability of finding the ship at an equatorial latitude is 

higher than at a polar latitude." Imagine that we now acquire information 

that the ship has been instructed to move to a particular latitude, but 

"interference scrambles our reception of which latitude. Then after the ship 

has had time to move, our knowledge is represented by assigning uniform prob- 

ability to each latitude." Note that neither the original problem formulation 

nor the subsequent information (about instructions to the ship) tells us any- 

thing that bears directly on the truth of where the ship is. 

While this approach is ingenious, it raises some questions: 

The justification for equal priors ("maximum entropy") is that 

they provide a "neutral background against which any systematic 

(non-random) patterns can be observed." But this formulation 

depends on a metaphor of physical equilibrium which has dubious 

applicability to belief revision in general. Thus, assignment of 

equal probabilities remains unjustified. 

Separate items of evidence bearing on the actual location of the 
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ship may be obtained, some of which are couched in terms of area 

and some of which are couched in terms of latitude. No single 

partition can serve as a "neutral background" for both types of 

evidence. 

a Are invariance requirements always clear? Do they always uniquely 

determine a partition? If the answer to these questions is yes 

(which we doubt), then it seems wrong to suppose that new informa- 

tion (e.g., about the ship's instructions) will always supplant 

the requirements implied by the original problem formulation. It 

appears, rather, that in some cases two or more sets of require- 

ments will be imposed, which cannot simultaneously be satisfied. 

a If the answer to the two questions above is no, then in some cases 

at least, partitions are not uniquely determined and assessment of 

prior probabilities is arbitrary and non-unique. The theoretical 

difficulty for Bayesian Theory remains as long as there is only 

one such example. 

Bayesian theory provides a clear behavioral interpretation of probabilities in 

terms of preferences among bets. Such behavioral implications are often miss- 

ing in theories that incorporate more satisfactory representations of 

ignorance; i.e., in those theories the available evidence may be insufficient 

to discriminate among the options. We return to this topic at the end of Sec- 

tion 2.2. 

In summary, Bayesian theory possesses a uniquely compelling logical foundation 

in application to the concept of chance and a strong link to decision making. 

However, it provides no guidance in terms of reliability of knowledge for 

choosing among alternative coherent analyses, is not well suited for dealing 

with incompleteness of evidence, and seems to imply the intelligibility of 

judgments about prior probabilities which in fact appear to be arbitrary and 

non-unique. 

2.2 Belief Functions 

In the theory of belief functions introduced by Shafer (1976), Bayesian prob- 



abilities are replaced by a concept of evidential support. The contrast, ac- 

cording to Shafer (1981; Shafer and Tversky, 1983) is between the chance that 

a hypothesis is true, on the one hand, and the chance that the evidence means 

(or proves) that the hypothesis is true, on the other. Thus, we shift focus 

from truth of a hypothesis (in Bayesian Theory) to the evaluation of an 

evidential argument (in Shafer's Theory). By stressing the link between 

evidence and hypothesis, Shafer's system (a) is able to provide an explicit 

measure of quality of evidence or ignorance (i.e., the chance that the 

evidence is not linked to the hypothesis by a valid argument); (b) is less 

prone to require a degree of definiteness in inputs that exceeds the knowledge 

of the expert, and (c) permits segmentation of reasoning into analyses that 

depend on independent bodies of evidence. We will find that each of these 

properties can contribute significantly to the representation of uncertainty 

in intelligence analysis. 

In Shaferls system, the support for a hypothesis and for its complement need? 

not add to unity. For example, if a witness with poor eyesight reports the 

presence of an enemy antiaircraft installation at a specific location, there 

is a certain probability that his eyesight was adequate on the relevant occa- 

sion and a certain probability that it was not, hence, that the evidence is 

i r re levant .  In the first case, the evidence proves the artillery is there. 

In neither case could the evidence prove the artillery is not there. 

To the extent that the sum of support for a hypothesis and its complement 

falls short of unity, there is "uncommitted" support, i.e., the argument based 

on the present evidence is unreliable. Evidential support for a hypothesis is 

a lower bound on the probability of its being true, since the hypothesis could 

be true even though our evidence fails to demonstrate it. The upper bound is 

given by supposing that all present evidence that is cons i s ten t  with the truth 

of the hypothesis were in fact to prove it. The interval between lower and 

upper bounds, i.e., the range of permissible belief, thus reflects the un- 

reliability of current arguments. This concept is closely related to com- 

pleteness of evidence, since the more unreliable a given argument is, the more 

changeable the resulting beliefs are as new evidence (with associated 

arguments) is discovered. These concepts are not directly captured by 

Bayesian probabilities. 



In Shafer's calculus, support m(*) is allocated not to hypotheses, but to se t s  

of hypotheses. As with probability, however, the total support across these 

subsets will sum to 1, and each support m(.) will be between 0 and 1. It is 

natural, then, to say that m(.) gives the probability that what the evidence 

means is that the truth lies somewhere in the indicated subset. 

Suppose, for example, that we have three hypotheses of interest: H1 (Country 

X has built nuclear device), H2 (Country X will have the capability within 5 

years), and H3 (Country X will not have the capability in 5 years). If we are 

ignorant regarding these hypotheses, we simply assign full support to the 

universal set, i.e., m((H1, H2, H3)) = 1; in other words, our available 

evidence tells us only that something is true, but not what. In a Bayesian 

analysis, arbitrary decisions would have to be made about allocating probabil- 

ity within this set, requiring judgments that are unsupported by the evidence. 

On the other hand, the evidence may be partly but not wholly imprecise. For 

example, Agent W's report of a pessimistic technical discussion among scien- 

tists in Country X may mean that building a nuclear device is at least five 

years away (H3); alternatively, it might only mean that Country X has not yet  

built a device (i.e., (H2 or H3)); finally (if Agent W is unreliable or if 

these scientists are not in the know), this evidence could mean nothing at all 

(i.e., (H, or H2 or H3)). We can now assess the chance of each possibility: 

e.g., m(H3) - .3; m((H2 or H3)) = .2; m((H1 or H2 or H3)) = .5. 

This same device, of allocating support to subsets of hypotheses, enables us 

to represent the reliability of probability assessments. Suppose, for ex- 

ample, that a certain type of seismograph reading has been associated with 

natural seismic activity 70% of the time and with nuclear tests 30% of the 

time based on past frequency data. If we are confident that seismic data now 

being analyzed are representative of this set, we may have m(earthquake) = .7 

and m(nuc1ear test) = .3. But if there is reason to doubt the relevance of 

the frequency data to the present problem (e.g., because the frequency data 

come from U.S. tests and the seismic data from other geological regions), we 

may discount this support function by allocating same percentage of support to 

the universal set. For example, with a discount rate of 30%, we get 

m(earthquake) = .49, m(nuc1ear test) = .21, and m((earthquake, nuclear test)) 

= .30. The latter reflects the chance that the frequency data are irrelevant. 



Shafer's belief function Bel(*) summarizes the implications of the m(') for a 

given subset of hypotheses. Bel(A) is defined as the total support for all 

subsets of hypotheses contained within A; in other words, Bel(A) is the prob- 

ability that the evidence implies that the truth is in A. The plausibility 

function PI(') is the total support for all subsets which overlap with a given 

subset. Thus, Pl(A) equals 1-~el(x) ; i. e. , the probability that the evidence 

does not imply the truth to be in not-A. In the example above (about Agent 

W), we get: 

Thus far, we have focused on the representation of uncertainty in Shafer's 

system. For it to be a useful calculus, we need a procedure for inferring de- 

grees of belief in hypotheses in the light of more than one piece of evidence. 

This is accomplished in Shafer's theory by Dempster's rule. The essential in- 

tuition is simply that the "meaning" of the combination of two pieces of 

evidence is the intersection, or common element, of the two subsets constitut- 

ing their separate meanings. For example, if evidence El proves (HI or H2), 

and evidence E2 proves (H2 or H3), then the combination El + E2 proves H2. 
Since the the meanings of the two pieces of evidence are assumed to be inde- 

pendent, the probability of any given combination of meanings is the product 

of their separate probabilities. 

Let X be a set of hypotheses HI, H2,. . . ,Hn, and write 2' for the power set of 

X, that is, the set of all subsets of X. Thus, a member of 2' will be a sub- 

set of hypotheses, such as (H2, H5, H7) , H3, or (HI, H2, H3, H4), etc. Let A 
X refer to any subset in 2 . Then if ml(A) is the support given to A by one 

piece of evidence, and m2(A) is the support given by a second piece of 

evidence, Dempster's rule is that the support that should be given to A by the 

two pieces of evidence is: 



The numerator here is the sum of the products of support for all pairs of sub- 

sets A1, A2 whose intersection is precisely A. The denominator is a normaliz- 

ing factor which ensures that m12(') sums to 1, by eliminating support for im- 

possible combinations. 

The following table illustrates the application of Dempster's Rule for combin- 

ing two sources of evidence: Agent Z's report of diversion of material, 

ml(-), and Agent W's report of a pessimistic technical discussion, m2(e). 

H1 

H2 

H3 

HlH2 

HlH3 

H2H3 

H1H2H3 
Null set 

where mf12(-) represents combined belief prior to normalization. 

J 
In our discussion of Bayesian theory (Section 2.1), we noted that a variety of 

probabilistic structures were available (a) to represent the propagation of 

uncertainty in a chain of events from data to hypotheses, and (b) to capture 

various types of non-independence among items of evidence and hypotheses. By 

contrast, the application of Dempster's Rule to belief functions appears (a) 

to apply only to the combination of evidence bearing on the same hypotheses, 

and (b) to demand that the evidence be independent. A more complete under- 



standing of the Shafer/Dempster framework, however, reveals that both of these 

appearances are misleading. 

Dempster's Rule can be used not only to combine evidence, but also to 

propagate uncertainty across chains of events (Laskey and Cohen, 1986; Shafer, 

1982). Suppose, for example, that A is a conditioning event whose truth or 

falsity affects the probability of a hypothesis H; e.g., H - "Country X has 
built a nuclear device"; Agent Z has reported diversion of nuclear material by 

- 
Country X; A - "Nuclear material has been diverted"; A - "Nuclear material has 
not been diverted" (cf., Section 2.1 above). To see how Dempster's Rule could 

apply to propagation, let us suppose we have a belief function over (A, A), 
and two conditional belief functions over (H, R), one conditional on A and the 

other conditional on A. We are interested in the implications of these 

beliefs for Country X's building a nuclear device: what is the implied uncon- 
- 

ditional belief function over (H, H)? We begin by extending each of these 

three belief functions to the space (A, A) x (H, H ) .  For example, support for 

A tells us nothing about H versus B; so we translate ml(A) as ml(A x (H, a ) ) .  
Support for H conditional on A, m2(HIA), indicates a link between H and A, but 

says nothing about H versus if A is true or about A versus A; so we repre- 
sent it as m2 ( (H x A) u ( (H, R) x A) ) . Assuming independence of the evidence 

used to assess them, the three extended belief functions are then combined by 

Dempster's Rule. Finally, the combined belief function overAhe product space 
- 

gives rise to a marginal belief function over (H, H); e. g. ,a is obtained 7 
I 

simply by summing the support for subsets contained in H. Details on the ap- 

plication of Dempster's Rule for propagation can be found in Appendix B. 

These same procedures can be applied to chains of events of any length 

and may also be used to represent interdependencies among evidence and 

hypotheses of any degree of complexity. For example, suppose we have an addi- 

tional item of evidence bearing on H: Agent W has reported discussions of 

nuclear devices among senior scientists in Country X. Let B = "Agent W is 
- 

honest"; B = "Agent W is not honest." The truth of H now depends on both A 

and B: 



. - 
Assume independence of the evidence for belief functions on (A, x) , on (B, B) , 
and on (H, H) conditional on A, A, B and g. Then we can derive two marginal 

belief functions on (H, H) by utilizing the method in the previous paragraph 
for (A, K )  and (B, z) separately; we then combine the results by Dempster's 
Rule. But what if our assessment of A (which involves Z's honesty) is not in- 

dependent of our assessment of B, W's honesty, e.g., Agents Z and W are busi- 

ness associates? In that case we must assess belief in the product space (A, 
- 
A) x (B, E ) ,  then assess belief in (H, H) conditioned on the four combinations 
of (A, A) and (B, z), before applying the method outlined in the previous 
paragraph. 

In an important sense, belief functions can be shown to handle all the inter- 

dependencies among events and evidence to which Bayesian Theory has been ap- 

plied (e.g., Schum, 1980). Dempster's Rule requires independence of the 

evidence underlying the belief functions that are combined; it does not 

require independence of the events or claims represented explicitly within the 

belief functions. Dependent items of evidence can be dealt with, then, by 

making questions about the reliability of evidence explicit, to be dealt with 

as conditioning events or intermediate hypotheses. 

One of the main difficulties standing in the way of a Bayesian analysis is its 

complexity. At first sight Shafer's approach seems simpler, since complicated 

independence judgments and conditional probability assessments appear not to 

be required. This appearance is illusory. First, as just shown, conditional 

non-independence can be represented in a belief function analysis. Secondly, 

support functions must be assessed over not just the hypothesis set, but over 

the power set of the hypothesis set. With 10 hypotheses, for example, the 

support distribution has 1,023 elements. In principle, then, the number of 

assessments required by a Shaferian model is likely to exceed the number 

required by a comparable Bayesian model. 

A Shaferian response to this, in parallel with the Bayesian response, is that 

specialized models may be developed that require far fewer assessments (such 

as consonant belief functions, in which all support goes to a nested series of 

hypotheses). Here again, however, (as in the Bayesian case) rather subtle 

judgments must be made to determine that a particular ~pecial~zed model is ap- 

plicable before savings in quantity of' assessments can be realized. Moreover, 



combining via Dempster's Rule does not preserve consonance; similarly, complex 

hierarchical models may become quite baroque. 

Shafer's theory offers a mild advantage over Bayesian theory, however, in the 

ease of organizing judgments into modular arguments. Belief functions are 

assessed separately for independent bodies of evidence, thus providing a 

measure of belief in the hypotheses based on each separate argument. 

In Bayesian theory, by contrast, there is no modular way to represent 

degree of belief based on different subsets of the evidence. Likelihood 

ratios for independent evidence represent the impact of an argument on belief, 

but do not represent degree of belief itself until prior probabilities are 

factored in. As a result, the same priors must be included in each argument 

bearing on the same hypotheses, thus compromising the modularity of the repre- 

sentation. 

Theories of belief like Shafer's, which provide intervals rather than single 

measures of support, may fail to uniquely determine a best decision. For each 

option, an upper and a lower expected utility may be computed. If the lower 

utility of option A is higher than the upper utility of option B, then A is 

preferred; but if the intervals overlap, the evidence fails to discriminate 

between the two alternatives. 

The occasional failure of belief functions to yield non-ambiguous prescrip- 

tions for action is, from the Bayesian point of view, a drawback. Within a 

framework that acknowledges the concept of ignorance, however, it may be 

regarded as a virtue. If the available evidence (plus preferences) does not 

uniquely determine a decision, we want to know this, rather than sweep it un- 

der the rug. Under circumstances of ignorance, the traditional Bayesian sys- 

tem requires the analyst to make arbitrary judgments to fill in the gaps. 

Such judgments are then treated exactly as if they were determined by the 

evidence. The belief function framework, by contrast, enables us to see how 

far the evidence itself takes us toward a decision, and how much of the work 

must be done by some other, non-evidential process. In fact, two such 

processes are available which, in conjunction with the evidence, will uniquely 

determine an action in any belief function analysis: (1) Adoption of a 

"decision attitude" for selecting a single point within the utility interval, 

e.g., best case, worst case, or a weighted average: (2) Narrowing the inter- 



vals by introducing additional substantive assumptions. Shafer himself has 

investigated a variant of (1) (Shafer, 1976); the system to be described in 

Section 3.0 provides a mechanism for (2). 

It would be appealing to regard Shafer's theory as simply a special-case 

Bayesian model, in which probabilities are assessed over the meaning of the 

evidence rather than over the truth of hypotheses. In that case, inference by 

Dempster's Rule would share the axiomatic derivation from formally desirable 

properties of belief that is a major feature of Bayesian theory. Such a 

derivation, is, however, unsuccessful. 

The basic support assignment ml(H) represents the "chance" that evidence col- 

lection 1 means that H is true. This chance cannot be interpreted as a 

Bayesian probability, however, because it is to be assessed as if the content 

of evidence collection 1 were unknown, In other words, there are two phases 

(at least in a conceptual sense) in the assessment process (see Shafer, 1985): 

First, we assess the general reliability of the source of this evidence, e.g., 

the accuracy and honesty of a witness or sensor, the general validity of the 

experimental method, type of argument, or analysis being employed. Only then, 

secondarily, do we take into account the content of the evidence, e.g., what 

the source said on this occasion, the result of the experiment, the conclusion 

of this argument or analysis. In the first.phase, one is considering the 

capabilities of the relevant evidential process in general to establish a link 

between evidence (whatever it turns out to be) and hypotheses. In our ex- 

ample, the chance that a report from Agent W about the tone of a discussion 

among scientists in Country X could discriminate H2 and H3 from both H1 and 

one another, is assessed as .3; the chance that such a report could dis- 

criminate H3 or H2 from H1 but not from one another is .2; the chance that it 

could make no discriminations at all among (HI, H2, H3) is .5. In the second 

phase, we use our knowledge of the content of the evidence (i.e., the tone of 

the discussion was pessimistic) to map these chances onto possible meanings of 

the evidence (e.g., we assign support of .3 to H3; we assign support of .2 to 

{H2, H3) ; and support of .5 to (HI, H2, H3 1) .  

The upshot of this restriction is that in a Shaferian analysis, we cannot use 

the content of the evidence (Phase 2) in our assessment of the reliability of 

the evidential process (Phase 'I). Thus we cannot reassess the reliability of 



an evidential argument based on its agreement or conflict with other lines of 

argument or with our independent judgment of the plausibility of its conclu- 

sion. Modularity thus comes at a certain cost. 

While a Bayesian analysis can, in principle, accommodate such considerations, 

it would require a very large set of conditional assessments, linking all com- 

ponents of one evidential argument with all components of every other argument 

that has the potential for corroborating or disconfirming it. Indeed, such 

considerations could also be incorporated into a belief function analysis, if 

we treat the reliability of a source with respect to a particular type of 

evidential content as an explicit conditioning event or intermediate 

hypothesis. (Such an approach, of course, pushes back the constraint against 

using the content of the evidence, to the assessment of reliability of the 

evidential processes underlying our explicit reasoning about reliability.) 

Few Bayesian (or Shaferian) analyses in fact attempt such completeness. Seen 

in this light, the gain in naturalness, modularity, and expressive power in 

the belief function approach may offset the largely pro forma loss in 

validity, 

How then should conflict or corroboration among different lines of reasoning 

be handled? Seldom, if ever, do human reasoners laboriously spell out all 

possible combinations of conflict and corroboration--as required by a Bayesian 

approach. Human reasoners typically use conflict among witnesses, sensors, or 

arguments as a symptom of the existence of problems in one or more of the 

relevant evidential processes and as a prompt for corrective action, such as 

re-examining the credibility of sources, reconsidering basic assumptions of 

the analysis, or searching for new information. Typically, an iterative con- 

flict resolution process is adopted, in which an argument or set of arguments 

is constructed, conflict prompts revisions in beliefs, the revised arguments 

are again checked for consistency, and the process repeats until a satisfac- 

tory result is achieved. 

In this light, the theory of belief functions contains the seeds of several 

useful tools for the resolution of conflict: 

(1) Diagnosis of conflict. To the extent that two arguments support 

incompatible hypotheses, the application of Dempster's Rule 



results in allocation of support to the null set (support for non- 

null sets is then increased, via the normalizing constant, so that 

total support to non-null sets sums to unity). This null set sup- 

port (equal to 1 minus the normalizing constant) provides a 

natural measure of the degree of conflict in the evidence. No 

equally natural measure is available in Bayesian Theory. (e.g., 

Spiegehalter and Knill-Jones, 1984). 

(2) Assumptions. To the degree that current evidence is uncommitted 

in regard to the truth or falsity of a hypothesis, there is room 

for assumptions. An assumption, therefore, could be naturally 

represented in Shafer's framework as a decision regarding the al- 

location of uncommitted belief. Such a decision, by definition, 

goes beyond the evidence, but remains within the constraints of 

the evidence. There is no comparable concept in Bayesian theory. 

(3) Discrediting arguments. The outcome of a process of conflict 

resolution is typically the discrediting of one or more lines of 

reasoning that led to the conflict, by rejecting assumptions in- 

volved in those arguments. Shafer's concept of discounting is a 

natural means of representing the outcome of such a discrediting 

process. In discounting, belief in specific hypotheses is 

decreased, and proportionately greater support is assigned to the 

universal set (i.e., the chance that the evidence tells us 

nothing). Once again, there is no measure of the reliability of 

an argument in Bayesian theory. 

Shafer himself does not address the notion of an assumption, as just outlined. 

Nor, therefore, does he link discounting to the rejection of assumptions. 

More fundamentally, as noted above, actions in response to conflict, such as 

re-examining source credibility, must occur outside the theoretical structure 

of belief functions. Later, in Section 3.0, we propose a system (based on but 

going beyond Shafer's theory) which embeds a belief function model within an 

iterative conflict resolution process, and which utilizes the tools implicit 

within Shafer's calculus to formalize and direct that process. 



In sum, a major strength of Shafer's theory is the naturalness of the input 

format it imposes: Assessments need go no further than the evidence jus- 

tifies. "Ignorance" is naturally represented by assigning support to a subset 

of hypotheses, with no further commitment to an allocation within the subset. 

A Bayesian must decide among quite definite and distinct, but equally ar- 

bitrary, allocations of probability. Weight or reliability of evidence is 

quite intuitively represented as the degree to which the sum of belief for a 

hypothesis and its complement falls short of unity. Shafer's theory does not 

permit reassessment of the quality of an information source in terms of what 

that source says; the credibility of one witness cannot be increased by cor- 

roboration of a second witness or decreased by contradiction. We argue, 

however, that these processes are best implemented, in any case,  by procedures 

of qualitative reasoning that re-examine sources of evidence as an analysis 

proceeds, and recalibrate them in the light of corroboration or conflict. As 

we shall see, Shafer's calculus provides a framework within which useful tools 

for that purpose can be developed. 

2.3 Non-monotonic Reasoning 

Non-monotonic logic is a direct effort, within the non-numeric tradition of 

artificial intelligence, to address the problem of assumptions and complete- 

ness of evidence. The first application of the ideas of non-monotonic 

reasoning was by Stallman and Sussman (1977), and since that time the theory 

has generated intense interest in the artificial intelligence and expert sys- 

tems communities (e.g., Doyle, 1979; McDermott and Doyle, 1980; McDermott, 

1982; Reiter, 1980; Moore, 1985; deKleer, 1986). 

Traditional logical frameworks fail to capture the non-monotonicity of natural 

human reasoning. Specifically, traditional formal logics are monotonic, in 

that the number of provable statements in the system increases monotonically 

in time as new axioms or premises are added to the system. In contrast, in a 

non-monotonic system a theorem may be retracted when new information (axioms) 

is introduced. 

Human reasoning is commonly non-monotonic because conclusions must often be 

arrived at on the basis of incomplete information. We cannot afford to wait 

until all possible relevant evidence is obtained. In the face of incomplete 



evidence, people adopt assumptions, acting as if they are true until evidence 

arises to the contrary. For example, if a building in Beirut is bombed, and 

the PLO publicly claims responsibility, we might adopt a provisional assump- 

tion that a faction of the PLO is in fact responsible. If later, however, an 

Iraqi government double agent provides believable testimony that the Iraqi 

government was behind the attack, we will drop our initial assumption. (We 

might later re-introduce the PLO assumption if we receive further information 

which casts doubt on the credibility of the Iraqi agent). Non-monotonic 

reasoning systems attempt to model this process of revising systems of belief 

to accommodate conflicting information. 

At any point in time, a non-monotonic system has a list of currently believed 

statements, together with a record of how these beliefs are justified. For 

example, in the Truth Maintenance System (TMS) developed by McDermott and 

Doyle, one basic form of representation is: 

Statement A SLCinlist ; outlist> 

In this representation, statement A is associated with a "support list" (SL) 

justification containing two different sets of statements, the inlist and the 

outlist. A is accepted if all statements in its inlist are accepted and no 

members of its outlist have been accepted. A statement with a non-empty out- 

list is an assumption: it is accepted provisionally (if its inlist is 

accepted), unless or until some member of its outlist is shown to be the case. 

In our example above, the initial attribution of responsibility to the PLO was 

an assumption, adopted on the basis of the public claim (inlist), but sub- 

sequently dropped when evidence was obtained to the contrary from the Iraqi 

double agent (outlist). Similarly, the credibility of the Iraqi agent was it- 

self an assumption, adopted until evidence to the contrary is obtained. 

As long as new information is consistent with current beliefs, the system in- 

corporates the new information by combining it with the currently believed 

statements, using its inference rules to derive new beliefs. It is possible, 

however, for new information to lead to an inference that contradicts a cur- 

rently held belief. When this happens, a process of dependency-directed back- 

tracking is initiated. The system traces back through the network of 

justifications to find the assumptions upon which the contradictory inferences 



depend, and makes revisions to achieve consistency. One assumption is 

selected as the "culprit," and is retracted by assuming that some member of 

its outlist is true. This causes any statements depending on the culprit 

assumption to be disbelieved. The process of retracting assumptions and 

changing truth values continues until a consistent set of beliefs is obtained. 

Unfortunately, the procedure for selecting among alternate belief revisions is 

arbitrary in two ways: typically, more than one assumption is implicated in a 

contradictory inference, and there is more than one way to reject each of 

them, by assuming a member of its outlist. Moreover, the theory lacks a 

measure of the degree of support for beliefs. Such a measure could provide 

the basis for selecting among possible belief revisions and would provide 

users an index of confidence in the conclusions of the argument. 

Non-monotonic reasoning is typically viewed as an alternative to systems based 

on the probability tradition, which employ numerical measures of uncertainty. 

In the terrorist example, a Bayesian or Shaferian system would assign a 

numerical degree of support to the different hypotheses concerning who was 

responsible for the bombing. Uncertainty is expressed by assigning degrees of 

support of less than unity to each of the hypotheses. When further informa- 

tion is received, degrees of support are updated to incorporate the new infor- 

mation. In the sense that probabilities may go down as well as up, Bayesian 

and Shaferian systems are "non-monotonic," and belief functions in particular 

have been recommended as a numerical version of non-monotonic reasoning. 

We think this is wrong. Current numerical systems are monotonic in at least 

three important senses: (a) Bayesian and Shaferian theory both lack a 

mechanism for provisionally accepting an uncertain hypothesis; (b) once a con- 

clusion is declared certain (i.e., degree of support = I), its support cannot 

be reduced; and (c) in Shafer's system, new evidence can only decrease the 

range of possible belief (i.e., the difference between Pl(H) and Bel(H)), but 

can never increase this measure of ignorance (e.g., by prompting the rejection 

of assumptions). As they stand, neither Bayesian nor Shaferian theory is an 

adequate substitute for the assumption-based reasoning in non-monotonic logic. 

A deeper look at the distinction between numerical theories and non-monotonic 

logic reveals a fundamental difference in their attitudes toward conflict. In 

both Bayesian and Shaferian theories, divergence among uncertain lines of 



reasoning can be loosely characterized as "stochastic": except when probabil- 

ity or belief equals 1, conflict is expected to occur some small percentage of 

the time, even when both of two conflicting lines of reasoning are normatively 

correct, due to the imperfect correlation or causal link between cues and 

hypotheses, or the chance accumulation of small errors in measurement. From 

the point of view of non-monotonic logic, however, divergence can be charac- 

terized as "epistemic": it is a result of faulty beliefs or methods. Con- 

flicting results are taken as evidence that one or more premises or forms of 

argument that led to the conflict are mistaken. 

These two conceptions of conflict lead to different rationales for the process 

of combining evidence or lines of reasoning. From the first point of view, 

the object is to reduce variance by a blind process of statistically aggregat- 

ing evidence, akin to that in which chance errors tend to cancel one another 

out across repeated measurements. Both Bayesian updating and Dempster's Rule 

fall into this category, as does the theory of uncertainty embodied in MYCIN. 

From the other point of view, however, the 'object is to improve the overall 

truth of a system of beliefs--to explicitly identify potentially erroneous 

steps in the argument and to change them. 

We argue that these views of conflict are complementary rather than competi- 

tive. Probabilistic arguments, although they lead to conclusions in the form 

of probabilities or degrees of belief, nevertheless depend on assumptions in 

the same way that deterministic arguments do. Assumptions, whether explicit 

or implicit in a probabilistic or belief function analysis, include some that 

pertain to modeling (e.g., normality, independence, linearity) and some that 

pertain to substance (e,g., the credibility of a source, proper functioning of 

a technical collection system, continued accuracy of a dated observation, ab- 

sence of a conspiracy to deceive among apparently unrelated sources). Not all 

of these assumptions, of course, are made all the time; but unless some such 

assumptions are made, analytic arguments (whether deterministic or probabi- 

listic) are condemned to perpetual inconclusiveness. Put another way, it is 

never possible to rule out, on the basis of positive evidence, all the factors 

that could undermine the validity of a particular argument. Therefore, in 

order to construct a Bayesian or Shaferian argument that discriminates 

adequately among the possible hypotheses, it is nearly always necessary to as- 

sume the absence of such factors. 



We will argue in Section 3.0 that non-monotonic logic has its most useful ap- 

plication as a control process for the application of an uncertainty calculus. 

Its role is to keep track of assumptions and direct the process of belief 

revision when those assumptions lead to anomalous results. 

2.4 Toulmin's Model of Argument 

In the preface to Uses of Argument, Toulmin (1958) rejects as confused the 

"conception of 'deductive' inference which many recent philosophers [and, we 

may add, A1 researchers] have accepted without hesitation as impeccable." 

Toulmin's motivation in that book is to turn away from the highly abstract 

character of traditional logic; to examine actual methods of reasoning in dif- 

ferent substantive areas, such as law and medicine; and to develop a theory of 

logic capable of capturing the rich variety of methods in everyday use. In so 

doing, he developed a framework for argument which may provide a useful 

linkage between numeric and non-numeric approaches to incompleteness of 

evidence. 

The basic framework of an argument, according to Toulmin, is as follows 

(Toulmin; et al., 1978): 

Backing 
5 

Warrant 

J 
Grounds Modal 

Qualifiers, Claim 
t 

Possible 
Rebuttals 

Figure 2-1. Toulmin: Strucuture of an Evidential Argument 

A claim, or conclusion whose merits we are seeking to establish, is supported 

by grounds, or evidence. The basis of this support is the existence of a 

warrant that states the general connection between grounds and conclusion: 

e.g., a rule of the form, if this type of ground, then this type of conclu- 



sion. The backing provides an explanation of the warrant, i.e., it provides a 

basis (theoretical or empirical) for the existence of a connection between 

ground and claim. Modal qualifiers (e.g., "probably," "possibly," "almost 

certainly") weaken or strengthen the validity of the claim. Possible rebuf- 

tals are factors capable of deactivating the link between grounds and claim, 

by asserting conditions under which the warrant would be invalid. A way of 

reading this structure is: Grounds, so Qualified Claim, unless Rebuttal, 

since Warrant, on account of Backing. 

Toulmin rejects the subjectivist's concept of probability as degree of belief, 

on the basis that this is incompatible with the natural requirement that es- 

timates of probability be reliable. If such estimates were purely subjective, 

there would be no sense in asking whether or'not they were reliable. On the 

other hand, Toulmin also rejects the objectivist's definition of 'probability 

in terms of frequencies, on the basis that such a definition confuses the 

meaning of probability (i.e., as a qualification of a conclusion) with the 

reasons for regarding the event as probable (i.e., the observed frequencies). 

In fact, he contends that, "the attempt to find some 'thing', in terms of 

which we can analyze the solitary word 'probability' and which all probabil- 

ity-statements whatever can be thought of as really being about, turns out to 

be a mistake" (p. 70). He defines probability as a modal qualifier whose 

function is to qualify the strength of the link betweengrounds (evidence) and 

conclusion. This notion is closely akin to Shafer's concept of belief as an 

evaluation of the validity or reliability of an evidential argument. 

Toulmin's framework also bears some important resemblances to non-monotonic 

logic. Both depart from traditional logic by providing for a process in which 

conclusions are accepted unless other propositions (members of the outlist; 

rebuttals) turn out to be true. There are two important differences: (1) 

Toulmin proposes a highly differentiated knovledge structure, in which the 

roles of grounds, warrant, backing, conclusion, and rebuttals are distin- 

guished within an argument, while non-monotonic logic proposes a much more 

homogeneous, undifferentiated knowledge structure; (2) Toulmin provides for 

graded or qualified acceptance of conclusions. 

Toulmin's model may find its most significant application as the basis for a 

data structure representing the uncertainty in a single argument, to be com- 



bined with other arguments via some numerical uncertainty calculus. Because 

of the focus in Shafer's theory on evidential links, a synthesis of Toulmin's 

theory with the theory of belief functions seems a promising avenue of re- 

search, and will be explored further in Section {. 3.0 6 

Toulmin fails to explore a further important dimension which relates numeric 

and non-numeric approaches: i.e., the linkage between probabilistic modal 

qualifiers (which, as noted above, assess the quality of an evidential 

argument) and the assumptions upon which the argument depends (the rebuttals). 

In one sense, of course, an argument is weakened to the degree that it depends 

on assumptions; in such cases, says Toulmin, we add the modal qualifier, 

"presumably," to the conclusion. In another sense, however, we become more 

certain of a conclusion, the more we assume. When the conclusion of an argu- 

ment is insufficiently definitive for the purposes at hand, the argument can 

be strengthened (i.e., probabilistic qualifiers express a higher degree of 

confidence) by making additional assumptions, so long as it is understood that 

the validity of the strengthened argument depends on these new assumptions. 

Conversely, when new evidence forces the rejection of an assumption (i.e., a 

possible rebuttal turns out to be true), the assessed strength of the argument 

must be further qualified or reduced. In Section 3.0, Toulmin's framework is 

expanded to include these tradeoffs. 

2.5 Theorv of Endorsements 

Paul Cohen's (1985) theory of endorsements, like non-monotonic logic, is a de- 

scendant of the AI-based logic tradition. Cohen shares with Toulmin, however, 

a concern to replicate the natural, qualitative structure of ordinary 

processes of reasonipg. It is of interest, therefore, that both Cohen and 

Toulmin focus on an evaluation of arguments that purport to establish a link 

between a conclusion and evidence. We have already noted that Shafer's 

numerical theory had the same concern. For Shafer, however, belief about the 

validity of such an argument can be adequately summarized in a numerical 

measure, the belief function,' i.e., the likelihood that the evidence proves 

the hypothesis. To Cohen, by contrast (as for Toulmin), it seems unnatural to 

assess the strength of an argument without actually saying what the argument 

is. The problem with numerical approaches, he argues, is that they allow us 

to state beliefs without providing justifications. The theory of endorsements 



attempts to provide a consistent format for representing and evaluating argu- 

ments. 

In Cohen's theory, each hypothesis is associated with a "ledger1' of confirming 

and disconfirming "endorsements." Endorsements state reasons for believing 

or disbelieving an argument that purports to establish a hypothesis. (Since 

the system implemented by Cohen has a rule-based architecture, such arguments 

take the form of data and rules.) Finally, Cohen's theory contains procedures 

for ranking different types of endorsements in terms of importance, for deter- 

mining when a set of endorsements qualifies a hypothesis for acceptance, and 

for resolving conflicts among hypotheses in terms of the relative strengths of 

their endorsements. 

Cohen's classification of endorsements by type is of interest to us, since it 

sheds light on qualitative differences among the considerations that influence 

the reliability of an argument. Cohen argues that procedures for ranking 

hypotheses and resolving conflicts are affected differently by different types 

of endorsements, Five categories of endorsements are distinguished: 

(1) Rule-condition endorsements characterize the relationship between 
a condition clause in the antecedent of the rule and the con- 
sequent of the rule. For example, endorsing a clause as flexible 
or inflexible specifies whether data must exactly match the rule 
antecedent for the conclusion to be acceptable, or if some degree 
of approximation is sufficient. Other such sets of endorsements 
include maybe-too-general, maybe-too-specific, exact; and suppor- 
tive, necessary. 

An additional set of endorsements in effect permits condition 
clauses to be treated as assumptions. A clause not-x that is en- 
dorsed by ostrich is accepted as long as x is not acceptable 
(i.e., adequately endorsed); a clause not-x endorsed by closed- 
world-assumption is accepted if an attempt toprove x has failed. 

(2) Rule-inference endorsements characterize the basis for deriving a 
conclusion from its conditions: i.e., model-based, causal, or 
correlational. 

( 3 )  Data endorsements are characterizations of the data by the person 
who supplies it; they include source, type-of-data, and accuracy. 

(4) Task endorsements involve a comparison of the potential conclusion 
of an inference with the conclusions of other inferences. They 
include corroborate, conflict, redundant, and are used in deter- 
mining the sequence with which rules are applied to the database. 



( 5 )  Conclusion endorsements are relevant after a rule has been applied 
and conclusions actually drawn. They include corroborate, con- 
flict, and redundant, as in (4). Additional endorsements of this 
type (unlikely, modal) involve a comparison of the conclusion to 
prior beliefs about its "usualness." A final endorsement 
(unwarranted) indicates that a conclusion is assumed. 

Cohen's approach captures a significant aspect of actual reasoning: the de- 

pendence of belief on qualitative characteristics of an argument. In a sense, 

therefore, it goes beyond Toulmin's argument framework by specifying relevant 

features associated with each component of the argument. Figure 2-2 shows how 

Cohen's taxonomy of endorsement types might be mapped into Toulmin's 

framework. 

Backing Rule - inference 
4 -  

Warrant Rule-condition - 
+ 

Grounds +Qualifier, Claim 

\ Data t ' Conclusion 
Rebuttals 

Rule condition (ostrich, 
closed world) 

Figure 2-2. Endorsement Types Associated with Toulmin's Argument Structures 

The chief difficulty with Cohen's theory is the ad hoc nature of the qualita- 

tive mechanism for ranking endorsements. For example, Cohen provides a scheme 

which divides endorsements very coarsely into two categories: "preferred" 

versus "not so good or downright bad". However, when hypotheses that have 

both "good" and "bad" endorsements must be ranked, additional stipulations are 

required. Further, even if all endorsements could be ranked by preference, 

the problem of appraising groups of endorsements would be unsolved. Thus, the 

decision of whether one proposition is better endorsed than another is quite 

arbitrary, and available procedures can often be insufficiently powerful to 

resolve conflicts. 



Cohen himself expresses the view that a hybrid approach might ultimately be 

desirable, in which the "strength" of an endorsement is numerically assessed. 

However, without some guidance as to the nature or meaning of such numbers, a 

"hybrid" approach might ultimately prove to be equally as ad hoc as Cohen's 

qualitative system. In Section 3.0, we propose a method for quantifying the 

impact of endorsements that is firmly based on an extension of belief func- 

tion theory. 

2.6 Alternative Probabilistic A~vroaches to Argument 

The basic intellectual building blocks of the system to be described in Sec- 

tion 3.0 have now been laid out: 

o assessing the reliability of arguments (Shafer, but also Cohen and 
Toulmin) ; 

o making assumptions explicit (non-monotonic logic, Toulmin); 

o resolving conflict by revising assumptions (non-monotonic logic); 

o representing arguments in a natural structure (Toulmin); and 

o identifying features of arguments that underlie assumptions and 
affect reliability (Cohen) . 

We have argued that the belief function calculus may be a more appropriate 

starting point than Bayesian theory for an assumption-based conflict resolu- 

tion process: because it provides a modular representation of evidential ar- 

guments and a definition of conflict, and because it already contains the 

basic elements of mechanisms for introducing assumptions and discrediting ar- 

guments. Although Bayesian theory has a strong axiomatic foundation, it lacks 

the expressive power to quantify the reliability of an argument or to measure 

ignorance. 

The latter claim would in fact be contested from a variety of directions by 

Bayesians who have developed variants of the standard approach (as discussed 

in Section 2.1). Here we can only very briefly identify some of these 

variants and indicate the reasons for our current dissatisfication. 

2.6.1 Probabilifving lopic. Applications of probability theory usually as- 

sume, implicitly, that the only relevant structure among propositions is 



reflected in the probability assessments which we make regarding them. For 

example, if 

then D is linked to (i.e., is evidence for) H. There is no way to determine 

this linkage by simply examining D and H. Yet consider the following 

argument : 

PI (Warrant): If witness X says he saw the installation, it is there. 

P2 (Datum): Witness X says he saw the installation. 

P3 (Claim): The installation is there. 

Here, P3 is a logical consequence of the conjunction of PI and P2. Thus, if 

we know the probability of Pl&P2, we can derive an upper and a lower bound on 

the probability of P3. Logical relationships among propositions thus place 

constraints on the probabilities, and perhaps hold out some hope for using 

probability theory to assess the reliability of arguments. 

Several recent theories (Nilsson, 1984; Lagomasino and Sage, 1985) address the 

logical relationships among the sentences whose probabilities are being 

assessed. 

Lagomasino and Sage (1985). These authors present a framework for imprecise 

inference that purports to combine Toulmin's logic of reasoning and the cal- 

culus of probability. In fact, we would argue that their use of Toulmin is 

quite incidental to their basic approach. A better characterization is that 

Lagomasino and Sage attempt to probabilify traditional logical relationships, 

and this turns out to be inconsistent with evaluation of an evidential argu- 

ment. 

Lagomasino and Sage use Toulmin's model of argumentation to frame the rela- 

tions among events, and to structure an inference model. In particular, the 

relationship between two events, grounds D and claim C, are re~resenked as: 



where W refers to warrant, and R refers to rebuttal. [Their use of the term 

rebuttal to include the negation of grounds or claim appears at odds with 

Toulmin's (1958) definition of rebuttal as "indicating circumstances in which 

the general authority of the warrant would have to be set aside" (p. 101).] 

The basic methodology is, first, to set up constraints on the probabilities 

(e.g., Pr(D) or Pr(D + C)) based on logical~elationships and probability 

theory. Information about the problem domain is then encoded as additional 

constraints (e . g. , Pr(D) > .5) . Finally, upper and iower bounds for any 

probability can be obtained by solving the appropriate linear programs (with 

objective'function min Pr(.) or max Pr(.)). In this framework, constraints on 

the probability of the warrant, Pr(D + C), combine with constraints on the 

probability of the data, Pr(D)--as well as constraints on probabilities of 

various rebuttals--to yield constraints on the probability of the conclusion, 

Pr(C) . 

' ~ t  first glance the probability of the warrant Pr(D + C) , appears to give a 

probabilistic assessment of the reliability of the argument from D to C. If 

D + C is true, the argument is reliable and C is true (given D). Thus, equat- 

ing Pr(D + C) with belief in C when D is known to be true, appears to parallel 

Shafer's concept of support (see Section 2.2 above). Unfortunately, the ' 

parallel with Shafer is quite spurious. 

Pr(D + C) cannot plausibly by construed as the probability (or strength) of an 

evidential link between D and C as long as "D + C" is interpreted within 

traditional logic (as the authors clearly intend). Within traditional logic 

"D + C" is true unless D is true and C is false. Thus, P(D + C) = P(D or C) . 
By the axioms of probability theory, this equals ~(5) + P(C) - P(E and C) . 
Therefore, in assessing the probability of D + C, we are focusing on the 

chance the antecedent is false and the chance the conclusion is true, and are 



not addressing the existence of any physically or logically real connection 

between the antecedent and the consequent. For example, "If the moon is made 

of green cheese, then the PLO is responsible for the attack" would be true in 

traditional logic, since the antecedent is false; yet clearly there is no 

evidential connection. Similarly, "If Albany is the capital of New York, then 

Reagan was President in 1986" is also true, since the consequent is true. A 

warrant construed in this way is quite trivial. It in no way addresses the 

impact of belief in D on belief in C, i.e., the strength of an argument. 

There is another respect in which Lagomasino and Sage's approach violates our 

intuitions about an evidential argument. Since D + C is true whenever C is 

true, but is also true if D is false, Pr(D + C) 2 P(C); i.e., Pr(D + C) is an 

upper bound on the probability of the conclusion, C. In probabilified logic, 

if Pr(D + C) = 0, then P(C) must also equal 0. But if Pr(D + C) did in fact 

capture the strength of an evidential argument, it would provide a lower bound 

for belief in C (analogous to Shafer's Bel(-)). The reason is that C might be 

supported by other arguments in addition to D + C. (By the Law of Total Prob- 

ability, the probability of C is simply the sum of the probability that the 

argument based on D is valid plus the probability that that argument is in- 

valid and some other argument is correct.) If the argument based on D is un- 

reliable, then it should tell us nothing about the chance of C (recall our 

discussion of ignorance in Shafer's system). Thus, Pr(D + C) does not 

adequately quantify our intuitions regarding the reliability of the argument 

based on D. 

An alternative interpretation of "D + C" is as an implicit universal 

generalization, Vx(Dx + Cx), i.e., all instances of D are also instances of C. 

The probability of "All D's are C's" is not an upper bound on the probability 

that a particular D is C, since the latter is not sufficient to establish the 

former. On the face of it, therefore, this appears to assert a more general 

r e l a t i o n  between D and C, which could be used non-trivially to support an ar- 

gument for C based on D in a particular case. Unfortunately, this will not 

w rk either. Such a generalization may be true because the antecedent is 

false for all instances or because the consequent is true for all instances. f 
Thus, "For all x, if x is a 20 foot tall person, then x is a spy" would be 

true, since no one is 20 feet tall; similarly, "For all x, if x is Russian, 

then x cannot run faster than the speed of light" would be true, since nothing 



can exceed the speed of light. In neither case is there a true evidential 

link between the predicate in the antecedent and the predicate in the con- 

sequent. Finally, note that a single counter-example (i.e., a case of D and 

not-C) is sufficient to establish falsity; i.e., Pr[Vx(Dx + Cx] would be zero. 

Yet we often assert the existence of evidential relations (e.g., "the public 

claim of responsibility suggests the PLO is to blame") even when the relation- 

ship is subject to exceptions (some public claims of responsibility are 

spurious). 

The source for all these confusions, we believe, is in the well-known in- 

ability of traditional logic to capture what is essentially a subjunctive or 

counterfactual relationship. According to a recent discussion by Nozick 

(1981), datum D is in an evidential relationship to conclusion C when D 

"tracks" C, in the sense that (a) if C were not true, D would not have been 

true; and (b) if C had been true in a different but reasonably similar cir- 

cumstance, D would still be true. Nozick argues persuasively that both condi- 

tions are required to exclude cases of accidental or lucky true belief where a 

person would not be said genuinely to know what he believes. When we assess 

the reliability of an argument, we are assessing the chance that some 

mechanism (causal or logical) exists which produces tracking of this sort. 

For example, when we assess the warrant P1 in the example above ("If witness X 

says he saw the installation, it is there"), we are concerned with witness X's 

eyesight and truthfulness on this occasion: these are the mechanisms which 

might cause X's testimony (D) to track the claim (C). Formulations in tradi- 

tional logic do not capture this. 

A more promising alternative would be to drop the truth-functional interpreta- 

tion of D -+ C as not-D or C, and to probabilify some version of modal, rather 

than traditional, logic. Thus, we might be asked to assess constraints on the 

probability of "N(D + C)", where "N" indicates an "evidentially necessary" 

link. There is considerable discussion regarding the construal of subjunctive 

statements in terms of a possible would semantics (e.g., Lewis, 1976). But 

"N(D -+ C)" might mean that C is true in all possible worlds where D is true 

and which are similar to some requisite degree to the actual world. It is 

sufficient here to note (a) that no plausible metric of similarity has as yet 

been specified, and (b) that no attempts have been made, to our knowledge, to 

apply probabilistic constraints to sentences in a modal logic. 



In sum, although Lagomasino and Sage's framework claims to be based on 

Toulmin's structure of argument, the similarity is superficial. The classical 

interpretation of logical connectives is inconsistent with using probabilified 

logic to assess evidential arguments. 

Nilsson (1984). Nilsson presents an approach that in essential respects is 

similar to that of Lagomasino and Sage. His method is presented as a 

generalization of classical first-order logic that is "appropriate for repre- 

senting and reasoning with uncertain knowledge." 

Nilsson starts by specifying a logical sentence whose truth values are of in- 

terest. These could be any conjunction of sentences of first-order logic; for 

example : 

S = {D, D + C, C) 

The truth-value of any one of the three components of this sentence is bounded 

by logical consistency relationships. For example, all three components could 

be true; this is logically consistent. However, the three components could 

not all be false; this is inconsistent, since. D + C is true if D is false. 

Note that this bounding is based on the combination of truth-values for all 

components of the sentence, not any individual component. Indeed, in the ex- 

ample any component could be true or false (value of 0 or 1); it is only com- 

binations that are prohibited. 

Each permissible combination of truth-values represents a "possible world," 

that is, a possible combination of true and false components. If the truth or 

falsity of each component is represented by the number 1 or 0 respectively, 

then a possible world can be represented as a three-dimensional vector of 

zeros and ones for a permissible state. In the example above, the following 

four vectors represent all possible worlds: 



If each component of the sentence is thought of as a dimension in three-space, 

then possible worlds are represented as four points in that space. 

Nilsson next generalizes the interpretation of the vector by allowing prob- 

abilistic "smearing" over worlds. This is done by allowing probability dis- 

tributions over different worlds and by defining the probability of a com- 

ponent as "the sum of probabilities of all possible worlds in which it is 

true." Under this definition, probabilities of components will be logically 

"permissible," in the sense that they must fall within the convex region 

bounded by the set of possible worlds. 

"Probalistic entailment" is a process in which we are given the probabilities 

of some sentences and then compute bounds on the probabilities for other sen- 

tences by using the logical constraints described above. Since logical con- 

sistency by itself rarely determines probability uniquely, Nilsson inves- 

tigates supplementary techniques. He both solves for "maximum entropy" prob- 

abilities and those produced by geometric projection, although neither method 

is provided with a basis or defended. In addition, one could presumably 

assess probabilities of "possible worlds" directly to derive the desired prob- 

abilities, although the assessment problem here seems immense. 

The principal difficulty of Nilsson's approach, from the present viewpoint, 

however, is that (like Lagomasino and Sage) it fails to capture true eviden- 

tial relationships. As noted above, these are not adequately represented in 

the first-order predicate calculus. Nor is it clear how effectively Nilsson's 

method could be extended to handle consistency constraints among sentences in 

a modal logic. In any case, it is likely that the assessment task would be 

enormously complicated (e.g., by the introduction of possible worlds contain- 

ing sets of possible worlds). 

Sha fer  and Logic. It is illuminating to contrast Shafer's approach with those 

discussed in this section. ml(C) can be interpreted as the chance that 

evidence collection 1 means that C is true; it depends on an assessment of the 

mechanisms that underlie the reliability of the evidential argument, e.g., the 

chance that the witness had adequate eyesight and is truthful. As we noted in 

Section 2.2, in Shafer's system evidential mechanisms are assessed in a 

general way, independently of the actual content of the evidence; thus, 



whether the witness had testified to C or to not-C, honesty and good eyesight 

would mean he should be believed; lack of honesty or poor eyesight mean his 

testimony should be disregarded. Shafer's measure of support, m(.), thus cap- 

tures the notion of an evidential link directly. For example, given three 

hypotheses (HI, H2, H3), m(H2 or H3) - . 3  means there is a .3 chance that the 

relevant evidential process (e.g., reports from a particular witness; statis- 

tical arguments making a certain type of assumption; etc.) can discriminate H2 

and H3 from HI, but not from one another. Outputs from such an evidential 

process would vary depending on whether the truth were in H1 or in (H2, H3). 

In short, the evidential process "tracks" H1 versus (H2, H3) with probability 

.3. 
\ 

In passing, we note that Nozick's (1981) concept of tracking may shed some 

further unexpected light on Shafer's approach. Evidence D "tracks" conclusion 
I 

C in the sense that (a) if C were not true, D would not be true, and (b) if C j 
were true (in somewhat different circumstances) D would still be true. But 

this formulation turns out to imply (by substituting not-D for D and not-C for 

C) that D tracks C if and only if not-D tracks not-C. Thus, the assessment of 

whether "tracking" exists (like assessments of m(.)) is independent of the 

content of the evidence, i.e., whether D or not-D in fact occurs. Failure to 

conditionalize on the evidence, while a shortcoming from the Bayesian point of 

view, thus has a justification of sorts in its correspondence to a well- 

founded concept of knowledge. 

J 

Shafer does not postulate a logical relationship between data and warrant, on 

the one hand, and conclusion, on the other. Thus, unlike other authors in 

this section, he does not seek to exploit such a relationship to provide a 

bound on belief in the conclusion. He directly stipulates that such a bound 

is provided by the assessment of the reliability of the evidential link be- 
, 

tween D and C. 

Nevertheless, it is possible to apply a belief function analysis to logically 

related sentences. Suppose independent belief functions have been assessed on 

two sets of hypotheses (...Ai...) and (...Bj...) which, in combination, may 

have logical implications for a third set of hypotheses, (...Hk...). Then it 

can be shown by methods discussed in Yager (#MIT-508) that 



where the summation is over all i, j such that Hk is logically derivable from 

Ai & B Lower and upper bounds on belief in subsets of (...Hk...), e.g., j. 
Bel(Hk) and P1(Hk), may then be computed in the usual way from m(.). In our 

simple example of truth-functional implication, m(C) = m(D) * m(D -+ C). This 

approach is easily generalized to the combination of more than two sets of 

hypotheses. 

To what extent can incorporation of logic within a belief function framework 

improve on probalified logic? In particular, does m(D -+ C) capture an eviden- 

tial link between datam D and conclusion C, or does it merely depend, like 

Pr(D -+ C), on belief in not-D or belief in C? Recall that the truth of D -+ C 

means simply that it is not the case that D is true and C false; therefore, 

D -+ C is true if D is false, whether or not C is true, and if both D and C are 

true. Thus, in a Shaferian analysis, support for D -+ C can be represented as 
- 

support for a subset of the hypotheses in the Cartesian product (D, D) x (C, 
- 
C), in particular, m(D -+ C) =m(C or 5) =m((C x D) u ((C, C) ~5)). (Note 
that this is precisely the expression used in Section 2.2 to represent the 

support for a hypothesis conditional on evidence.) The key point is that m(C 

or 5) is not a function of m(C) and m(D), as in Bayesian probability theory. 

Thus, m(D -+ C) is not affected by evidence that bears directly on the falsity 
- 

of D; such evidence is summarized by m(D x (C, C) ) . Nor is it affected by 

evidence that bears directly on the truth of C; that evidence is summarized by 

m(C x (D, E l ) .  Rather, m(D -+ C) summarizes evidence that bears directly on 

the falsity of D&not-C, i.e., on the link between D and C. Thus, D -+ C may 

keep its proper truth-functional interpretation (true if D is false or C is 

true); there is no need to apply belief to sentences in a modal logic. Incor- 

poration of D -+ C within the context of m(-) removes the triviality and 

focuses concern on the existence of a real evidential connection. 

2.6.2 Higher-order probabilities. A quite different Bayesian approach is to 

assess higher-order probability distributions reflecting confidence in the 

first-order probabilities (e.g., Lindley, Tversky, Brown, 1979; Tani, 1978). 

The second-order assessments capture the amount of knowledge (or ignorance) 

underlying an assessment of the first-order probabilities. Thus, a very 

sharply peaked second-order distribution centered on .5 reflects a high degree 



of confidence that . 5  is the "true" first-order probability (e.g., the conclu- 

sion of a long process of sifting evidence). But a flat second-order dis- 

tribution whose mean is . 5  reflects a high degree of ignorance (e.g., prior to 

consideration of any evidence). Second-order distributions of this sort thus 

appear to increase the expressive power of Bayesian theory, by capturing com- 

pleteness of knowledge or reliability of an argument. And they may be used in 

higher-order inferences (e. g. , regarding hypotheses about the "true" first- 

order probability), to resolve conflicts among inconsistent probabilistic 

analyses. 

This approach, however, suffers from a variety of drawbacks. In the first 

place, it threatens an infinite regress of high-order judgments; secondly, the 

assessment burden can be massive (especially if higher-order non-independence 

were to be taken into account); and thirdly, the formal justifications as- 

sociated with Bayesian theory, e.g., avoiding a "Dutch book," are not compell- 

ing at the level of. second-order bets (or bets about bets). 

Most importantly, however, the meaning of second-order probabilities is itself 

unclear. One approach is to regard them as capturing "measurement error" in 

assessing first-order probabilities. But how can we be uncertain about our own 

current subjective probabilities (especially if we construe them as equivalent 

to choices among gambles)? More to the point, why would such uncertainty (if 

it exists) be of interest in resolving conflicts among lines of reasoning? 

To make the latter question vivid, consider two probabilistic analyses regard- 

ing the same hypothesis. The first analysis yields a probability of .8; the 

second yields a probability of .6. According to the measurement error ap- 

proach (Lindley, Tversky, and Brown, 1979), reconciliation of the two analyses 

gives us an estimate of our "true" probability that typically lies between . 6  

and .8 - e.g., .7. What this ignores is the possibility that the two analyses 
tapped independent sources of evidence. Suppose that is the case, and that 

the two collections of evidence both favor the hypothesis. Then the second 

analyses should cause us to increase our probability (e.g., from .8 to .9), 

not decrease it (from .8 to .7) .  In other words, the measurement analogy 

(applied in this way) precludes use of second-order probabilities to evaluate 

distinct evidential arguments . It treats the problem as an inference about 



someone's inner state rather than about the world, and fails to combine the 

two arguments properly in terms of the amount of independent evidence in each. 

Suppose instead that we assess second-order probabilities regarding the com- 

ponents of a single probabilistic analysis (e.g., likelihood ratios and prior 

odds in Bayesian updating), and then compute the second-order distribution for 

the output probability (e.g., the posterior odds). Unfortunately, the spread 

of the second-order output distribution is larger the more components we in- 

troduce to the argument (since measurement error propagates to the conclusion 

in a standard way). Yet we would expect the reliability of the output prob- 

ability to be greater as the number of items of evidence we consider in- 

creases. Again, it seems clear that measurement error'does not capture 

reliability of the argument. 

An alternative interpretation of second-order probabilities refers to our fu- 

ture subjective probabilities ; i.e. , we assess the chances that our first- 

order probability will assume various possible values after we obtain further 

information. To produce such an assessment, however, we must make rather ar- 

bitrary decisions to delimit in terms of time or effort the future evidence we 

consider relevant (since most if not all probabilities will become either zero 

or one after all future evidence is obtained); we must then make extremely 

speculative and hypothetical judgments about what we are likely to learn 

within the delimited sphere. 

Even then, the usefulness of the resulting assessments is in doubt. Suppose 

our task is to decide whether or not to revise a probability assessment 

derived by method A, because of conflict with another assessment derived by 

method B. It seems pointless to demand a direct assessment of the 

shiftability of the probability derived by A in the face of future evidence 

(e.g., B): it is shiftability that we are trying to determine in resolving the 

conflict between A and B. In other words, the second-order probabilities 

don't help much in this problem, since they require that the problem be solved 

before they can be assessed. 

It seems more useful to obtain assessments of the reliability of argument A 

and of the reliability of argument B. The essential difference is that in as- 

sessing Bayesian second-order probabilities, one must somehow consider pos- 



sible future evidence whether it pertains to the present argument or to other 

(possibly unanticipated) types of argument. In assessing reliability, 

however, we focus on the argument at hand: how thoroughly have the assumptions 

been checked, where could it go wrong and how? To be sure, shiftability is 

correlated with reliability: The more reliable we think an argument is in its 

own right, the less likely it is that some future argument will be devised 

which impugns it--and we will assess a correspondingly narrow range of future 

probability values. Nevertheless, reliability seems to be the more fundamen- 

tal, and easier, judgment. 

2.6.3 Evidentiarv value. A final Bayesian approach, proposed by a group of 

Swedish researchers (Hallden, 1973 Edman, 1973; Gardenfors, Hansson, and Sah- 

lin, 1983) is closer in some respects to Shafer's work. As for Shafer, the 

focus of attention has turned from the truth of a hypothesis to the probabil- 

ity that the evidence proves the hypothesis. The essential difference between 

the Swedish work and Shafer's is that the former conditionalizes the assess- 

ment of an argument's credibility on what that argument (and other arguments) 

have actually concluded. This work however, lacks most, if not all, of the 

virtues of the belief function representation (see Shafer, 1984). Formula- 

tions which conditionalize on the evidence become extremely complex even for 

the simplest examples. Little progress has been made in deriving rules for 

the combination of evidence involving the full range of cases to which 

Dempster's rule applies. Finally, this work sacrifices a significant virtue 

of Shafer's system, the ability to segment evidence into independent argu- 

ment s . 

2.6.4 Conclusions. In sum, a variety of extensions to traditional Bayesian 

Theory have been proposed, with the explicit object of capturing such notions 

as causal or evidential relationships and completeness of evidence. These ex- 

tensions include (a) applying probabilities to logically interrelated sen- 

tences, (b) applying probabilities to probabilities, and (c) assessing the 

probability that an evidential relationship exists, conditional on the 

evidence. The first approach fails because of a lack of expressive power in 

the first-order predicate calculus to represent causally related sentences. 

The second approach fails because of the lack of an appropriate, evidentially 

relevant interpretation of higher-order probabilities. The third approach 

does capture the relevant concepts, but sacrifices simplicity and modularity. 



The model presented in Section 3.0 addresses this problem in an altogether 

different way: not by elaborating on a first-order uncertainty calculus, or 

re-applying it at a higher level, but by attention to the reasoning process by 

which the calculus is applied. It thus retains both the simplicity and the 

modularity of Shafer's representation (and its direct approach to the concept 

of an evidential relationship), but captures interdependencies by embedding a 

Shaferian argument within a corrective process of heuristic reasoning. 

Let us stress, however, that a belief function approach is not necessarily the 

only, or even the best, model of uncertainty for incorporation in such a 

heuristic conflict resolution process. We are impressed by the naturalness 

with which it can be made to serve in such a process (Section 2.6.2 above), 

and have found other approaches less satisfactory in this respect. However, 

we would argue that the application of any uncertainty calculus is based on 

assumptions, hence, is guided by a heuristic, iterative process. Other ap- 

proaches which in the future way prove more satisfactory, but which at present 

seem insufficiently well developed, are Kyburg's notion of convex Bayesian 

sets (1985, 1986) and Nau's axiomatic extension of Bayesian probability to al- 

low nested sets of probability intervals with associated measures of con- 

fidence (1986). 

2.7 Fuzzy Set Theory 

In this section, we turn to a quite different type of uncertainty: the fuzzi- 

ness or vagueness that characterizes ordinary language in virtually all fields 

of reasoning. Since L.A. Zadeh advanced fuzzy set theory in 1965, an enormous 

amount of interest, and a very large literature, has been generated. Most of 

this interest has been theoretical, concerned with the mathematical implica- 

tions of the theory, but there have been a number of attempts to apply the 

theory to practical problems. Zadeh argued that most highly complex problems 

could not be understood or modeled at the level of precision demanded by 

traditional analytical tools. The appropriate (and intuitively natural) ap- 

proach to such problems involves imprecise concepts and methods of reasoning. 

Attempts to eliminate such imprecision inevitably involve arbitrary, ad hoc 

decisions and, in the end, distort one's understanding of the central facts. 

Nevertheless, analysis (especially with computers) requires precision. To 



resolve this paradox, Zadeh introduced the now well-known concept of the fuzzy 

set--a set with imprecise boundaries. While ordinary sets have all-or-nothing 

membership functions, a fuzzy set has a membership function pA(x) which 

represents the degree to which an element x belongs to some set A. If pA(x) = 

1 then x fully belongs to A, while if pA(x) = 0, x does not belong to A. An 

intermediate value, such as pA(x) = 0.6, indicates that x belongs to the set 

to some degree. Fuzzy sets are thus a precise tool for representing and 

manipulating imprecise notions. 

Application of fuzzy set theory involves: (1) the translation of an imprecise 

natural language problem into a representation involving fuzzy sets; (2) the 

use of a calculus to transform the initial fuzzy sets into other fuzzy sets 

representing the required output variables of the analysis; and (3) rein- 

terpretation of the results in imprecise natural language (see L.A. Zadeh, 

1975). The first and last steps are crucial if the flavor of fuzzy set theory 

is to be fully captured, The core idea is to construct a calculus for the 

formal (i.e., precise) manipulation of imprecise concepts, which takes in im- 

precise inputs and puts out imprecise outputs. 

Fuzzy set theory provides a powerful range of tools for (a) interpreting the 

meaning of natural language utterances, and (b) fuzzifying any existing logi- 

cal or mathematical structure. The issues of concern to us in this discussion 

are, first, whether these tools can be used to construct a viable approach to 

evaluating evidential arguments, and second, aspects of reasoning relevant to 

intelligence analysis that are captured by fuzzy logic but not by other ap- 

proaches. 

Consider the following exchange: 

Q: How large is the enemy installation? 

A: It's pretty large. 300 personnel are assigned there. 

In fuzzy set theory, the denotation of "large installation" could be repre- 

sented by a fuzzy set membership function. Such a function gives the degrees 

of membership for different numbers of personnel in the fuzzy set "large in- 

stallation, " e - g- , P large- installation (300 personnel) = - 4 ;  P large- 

installation (800 personnel) = .9; etc. The impact of the qualifier "pretty" 
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might be represented by a simple transformation of this function: f 

ppretty-large- installation ( ' )P[plarge- installation 

so, 

ppretty-large-installation (300 personnel) - .4'I2 = . 6 3 .  

Two concepts, degree of truth and possibility, are at the core of Zadeh's 

theory of fuzzy reasoning. Both are defined in terms of fuzzy sets. If we 

know the installation has 300 personnel, then the degree of truth in the claim 

that it is large,  installation is large), equals plarge-installation (300 
personnel)=.4. Conversely, suppose we do not know the exact number of person- 

nel assigned to the installation, but we do know that it is large (e.g., 

through frequent interception of signals or sightings of supply activity). 

This proposition ("the installation is large") induces a possibility distribu- 

tion on related, perhaps implicit, variables (in this case, the number of 

personnel). In other words, given that the installation is large, we can as- 

sign a degree of possibility to any given size. The degree of possibility is 

just the degree of membership of that size in the fuzzy set Itlarge 

installation". 

Fuzzy membership functions canbe combined via operations which represent 

"fuzzifications" of the usual set-theoretic and logical operations (union, in- 

tersection, implication, etc.). For example, according to the most commonly 

used definitions of intersection and union, 

In other words, the degree of membership of an object or value x in the union 

(intersection) of two fuzzy sets, A and B, is equal to the maximum (minimum) 

of x's degrees of membership in A and B, respectively. 

In the evaluation of an evidentiary argument, implication may play a key role. 

Recall that in classical logic, a statement of the form p+q (if P, then q) is 

true as long as it is not the case that p is true and q is false (see Section 

2.6.1 above). There are a variety of ways to fuzzify this relation. The es- 

sential intuition behind one popular approach (Gaines, 1977) is a direct 



generalization of the traditional definition: The degree of truth of the con- 

clusion (q) must be at least as great as the degree of the truth of the an- 

tecedent (p), assuming the rule itself (p+q) is completely true. If the 

degree of truth of the rule is less than one, then to that degree the conclu- 

sion may be less true than the antecedent. If the degree of truth of the rule 

and the antecedent of the rule are characterized fuzzily rather than 

precisely, linear programs may be used to find the degree of truth of the con- 

clus ion. 

In fuzzy set theory, propositions may involve a variety of different types of 

fuzzy hedges: truth-qualifications ("very true," "pretty true," etc.), 

possibility-qualifications ("possible," "almost impossible," "quite possible"; 

etc. ) , and probability-qualif ications . The latter includes fuzzy probabil- 

ities like "quite probable" and "not very likely," in addition to fuzzy quan- 

tities such as "most", "usually," "several," "few" and "more than half". 

Hedges are themselves interpreted within the theory as fuzzy sets. Thus, 

truth-qualifications are fuzzy sets containing numbers between 0 and 1 to 

varying degrees. For example a degree of truth of .9 might belong to the set 

"very true" to the degree .8, while degree of truth .4 might belong only to - 

degree .l. Thus, "it's very true that this is a large installation" induces a 

possibility distribution over the degrees of truth of "this is a large instal- 

lation. " 

With these tools, a large variety of fuzzy~reasoning processes y 
can be explicated: e.g., 

P1 It is very true that if an installation is large, it is dangerous. 

P2 This installation is moderate in size. - 
P3 It is only slightly true that this installation is dangerous. 

In this argument, both the datum, P2, and the warrant, PI, are imprecise. 

What is of special interest is that the datum (a moderately sized 

installation) and the antecedent of the rule (a large installation) do not ex- 

actly match. In fuzzy set theory, the applicability of the rule is not all- 

or-none; the strength of the conclusion is diminished, but not destroyed, as a 

function of this dissimilarity. The degree of truth of the antecedent is com- 



puted as the intersection of the two fuzzy sets, "large" and "moderately 

sized" : 

Ptrue (installation is large) s:P [Plarge ("1" ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - l ~ ~ ~ ~ ( ~ ) l  

where n ranges over number of personnel and "An is the min operation. 

To what extent can fuzzy hedges and fuzzy implication be utilized to assess 

the strength of an evidentiary argument? Consider the following warrant (cf., 

Section 2.6.1): 

It is very true that if witness X says he saw the installation, it is 

there. 

The hedge "very true" induces a possibility distribution over the truth value 

of the implication. But for any of these possible truth values to be correct, 

all that is required is that the antecedent not exceed the conclusion in truth 

value by more than some specified amount. Thus, "if the moon is made out of 

cheese, then the installation is there" would have degree of truth one, since 

the degree of truth of the antecedent is zero. Fuzzification of truth- 

functional implication thus provides no escape from the problems identified 

earlier with traditional logic. Assessments of degree of truth in this con- 

text do not capture an actual evidential link, and (to the degree that the an- 

tecedent is true) are reducible to direct assessments of the degree of truth 

of the conclusion. 

An alternative approach within fuzzy logic is to use probability-qualifica- 

tions rather than truth-qualifications. Probability hedges and fuzzy quan- 

tifiers (like "usually") are fuzzy sets whose members are proportions or rela- 

tive frequencies, rather than degrees of truth. Thus, consider an alternative 

version of our warrant: 

Usually, when witness X says he saw an installation, it is there. 

The hedge "usually" induces a possibility distribution over the proportion of 

cases in which, when X reported he saw an installation, the installation was 

there. Such hedges generalize traditional universal quantification ("all") in 

several ways: (1) fuzzy quantifiers make many more discriminations than the 



traditional "all" and "some" (e.g., "nearly all," "most," "a few," etc.); (2) 

quantifiers do not correspond to exact proportions, but include different 

proportions to different degrees; and (3) the proportions themselves may be 

fuzzy (i.e., cases in which witness X said he saw an airplane and it was or 

was not there, might count toward the proportion--through to a lesser degree 

than cases where an installation was reported). Thus, it might be possible to 

gauge the strength of an evidential link by selection of a fuzzy qualifier 

from the rough continuum ranging from "none" to "all." 

This approach avoids some of the problems addressed in Section 2.6.1 in con- 

nection with universal quantification. While "Pr (for all x, if x is F then x 

is G)" is zero if there is a single x which is F and not G, "usually (F's are 

G's)" appears to describe a strong evidential link where most, though not all, 

F's are G's; "few (F's are G's)" describes a weaker link; etc. Nevertheless, . . 

we argue that this approach fails to capture adequately the notion of an 

evidential link. First, since probability-hedges are defined in terms of 

proportions or relative frequencies, there is no provision for propagating 

such measures to assess the strength of a particular, unique conclusion (is 

this reported installation actually there?). More fundamentally, such hedges 

(like universal quantification) miss the subjunctive (counterfactual) nature 

of evidential connections (Section 2.6.1 above). The point of the warrant is 

that if the installation were not there, witness X would not have reported it: 

there is a mechanism (good eyesight, adequate visibility, honesty, etc.) which 

ensures that the evidence "tracks" the hypothesis on this occasion. That 

reports from this witness have been true in the past is evidence for the 

existence of tracking now, but is not the same thing (imagine the witness has 

just gone blind). 

A third problem with this approach is that fuzzy probabilities do not change 

in an appropriate way in the course of an evidential argument. An argument 

based on Bayesian updating (Section 2 .l) can be fuzzified by providing fuzzy 

rather than exact likelihoods for the evidence given the hypotheses (e.g., 

this observation is "pretty likely" if H is true, but "very unlikely" if H is 

false). As we add items of evidence inthis way, however, the degree of im- 

precision in the conclusion increases rather than decreases. Fuzzy probabil- 

ities, therefore, appear to capture imprecision .in the assessment of probabil- 

ities, e.g., "measurement error" (Section 2.6.2 above), rather than un- 



reliability or incompleteness of the evidential argument. The former in- 

creases as more sources of error are added; the latter decreases as new items 

of evidence are considered. 

Still another approach to evidential evaluation within fuzzy logic involves 

the use of possibility-qualifications, rather than truth-qualifications or 

probability-qualifications. Possibility hedges (like "impossible" or "very 

possible") are fuzzy sets that take degrees of possibility as members. Thus, 

"it is very possible that the installation is there" induces a higher-order 

possibility distribution over the possibility that the installation is there. 

First-order possibility measures of this sort intuitively do capture a notion 

quite close to the strength of an evidential link: i.e., the degree to which 

the evidence fails to exclude a given hypothesis. (A correlative notion of the 

"necessity" of H can be defined as 1-~oss(H).) Moreover, it turns out that 

Shafer's plausibility, PI(*) (Section 2.2 above), is a possibility measure in 

Zadeh's sense when the subsets to which belief is assigned are nested. (In 

fuzzy logic, there is a simple rule for deriving the possibility of the union 

of two sets from the possibilities of the sets: 

Poss (A U B) = Max (Pos(A), Pos(B)). 

This rule also applies to Shafer's PI(-) for consonant, i.e., nested, belief 

functions. However, consonant belief functions are only one special case of a ) 
belief function model. Nor is there any guarantee that the combination of 

consonant belief functions via Dempster's Rule will result in a new consonant 

belief function. Zadzh's Rule for combining evidence (i.e., for combining 

different possibility measures on the same hypotheses, based on independent 

evidence) is : 

Possl, 2(H) = Min (Posl(H), Pos2 (H)) . 

Shafer (1981) has pointed out this rule may be regarded as the strongest com- 

bination rule for consonant belief functions that guarantees a consonant 

belief function as the conclusion. Thus, although Zadeh's possibility measure 

can be seen in one sense as a generalization of belief functions (permitting 

fuzzy as well as precise specifications of PI(*)) in another sense it is a 

restriction (applying only to consonant elements). 



In sum, fuzzy logic is a highly flexible and versatile tool for handling im- 

precision, a concept of uncertainty not modeled well by the other theories we 

have discussed thus far. Unfortunately, the meaning of fuzzy measures is not 

always clear. In particular, there are neither behavioral specifications (as 

in the betting interpretations of Bayesian theory) nor canonical examples (as 

Shafer believes are important). The procedures for combining membership 

functions are not unique, and the justification for the ones Zadeh recommends 

is not clear. Moreover, no consistent method appears to have been developed 

for translating output membership functions back into linguistic expressions. 

Finally we have shown that efforts to use fuzzy logic to define an evaluation 

measure for the reliability of an evidential argument are inadequate, except 

for an approach (possibility measures) that is in critical respects a special 

case of Shaferian belief functions. 

The major contribution of fuzzy set theory, we feel, may be the identification 

of a type of uncertainty not addressed at all in other frameworks. The core 

idea is that similarity plays a role in reasoning that cannot be equated with 

concepts like chance, reliability of an argument, or completeness of evidence. 

Consider the example above, involving the partial match between a rule antece- 

dent ("large installation") and an observation (a "moderately sized 

installation"). In determining whether or not, or to what extent, the rule 

should be applied, the issue is not uncertainty about the facts (i.e., 

chance). We are not wondering about the chance that a moderately sized in- 

stallation is, or is not, large. The problem is that there is no well-defined 

situation which would determine the outcome of a bet on this matter. Fuzzy 

set theory gives a plausible account of this problem: the denotations of 

"moderately sized" and "large" are neither identical nor disjoint, but over- 

lap. Nor are we wondering about the exact size of the installation. Suppose 

we know its size: e.g., 200 personnel; there is still the question of the 

degree to which such an installation is "large." Efforts to translate such 

concerns into the language of probability theory will inevitably involve (a) 

arbitrary and ad hoc specifications of cutoffs (e.g., when an installation has 

more than 300 personnel, it abruptly becomes "large"); and/or (b) unnatural 

shifting of the problem (e.g., the chance than an English-speaker would say 

that an installation with x number of personnel was large). 



Partial matching of current observations and stored knowledge or previous ex- 

perience is, we are convinced, an inescapable aspect of any intelligent 

reasoning process. We would argue, however, that effective implementation of 

such a concept requires a viable notion of the reliability of an evidential 

argument. In short, the most common effect of an imperfect match between 

evidence and knowledge is to reduce the impact of the argument based on that 

evidence. The system to be described in Section 3.0 thus links dissimilarity 

of rule antecedent and evidence to discounting of an argument in a belief 

function framework. 



3.0 A SELF-RECONCILING EVIDENTIAL DATABASE 

3.1 Introduction to SED 

In communicating conclusions based on incomplete, unreliable, and inconsistent 

data, the intelligence analyst faces a dilemma. If he provides an explicit 

account of divergent possible interpretations, confused policy-makers may ob- 

ject that he has hedged too much. If he reports only the uncontroversial 

elements of divergent views, he may be accused of being too bland. Neverthe- 

less, if he takes a definite position, which turns outto be wrong, the con- 

sequences may be even worse. 

Although increasing attention is being given to the problem of representing 

uncertainty in database systems, very little work has been done on methods for 

representing the evidential arguments that underlie assessments of uncer- 

tainty. Yet understanding and manipulating such arguments are essential to 

the intelligence analyst's tasks of making sense out of unreliable and incon- 

sistent data and communicating conclusions. A key element in all these tasks, 

we contend, is the utilization by the analyst of qualitative and approximate 

causal models of how the available data could be linked to an as yet unknown 

"ground truth". 

In this section we turn to the description of a system, the Self-Reconciling 

Evidential Database, which addresses these problems on three levels: (a) by 

providing a generic schema for an evidential argument based on the underlying 

causal chains that link conclusions and evidence; (b) by permitting the 

analyst to investigate different representations of the same argument through 

adoption and revision of assumptions; and (c) by embedding evidential argu- 

ments within a higher-level "metareasoning" process that responds to conflict 

between different lines of argument by tracing the assumptions involved in the 

conflict and recommending revisions. 

&!5 
cb\21&P(lPSED represents evidential arguments within a framework that combines elements 

2 
from numerical models of uncertainty (Shafer/Dempster belief functions) and 

aspects of more qualitative approaches to reasoning (based on Toulmin and Paul 

Cohen). The latter provide a natural structure for representing the com- 

ponents of an argument and factors which affect its validity. We stress, 

however, the preeminent role of causal relationships among these factors - in 



agreement, incidentally, with recent philosophical analyses of knowledge in 

terms of explanatory connections linking evidence and conclusions (e.g., Har- 

man, 1973; Nozick, 1981). Shafer's theory of belief provides an effective 

calculus for capturing these causal relationships. In addition, it provides a 

quantitative measure of the strength of an argument (in terms of uncommitted 

belief), methods for combining arguments, and, in an extension of the theory 

to be described here, tools for representing assumptions (as decisions regard- 

ing the allocation of uncommitted belief). 
di rJv + 8' 
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problem representation at the level of probabilities or degrees of belief. A 

variety of valid models may exist which differ in the precision and/or diver- 

gence of their conclusions, as well as in the number and magnitude of the as- 

sumptions which they require. Assumptions may pertain to modeling (e.g., nor- 

mality, independence, linearity) or they may pertain to substance (e.g., the 

credibility of a source, proper functioning of a data collection system, con- 

tinued accuracy of a dated obsewation, absence of a conspiracy to deceive 

among apparently unrelated sources). Not all of these assumptions are made 

all the time; but unless some such assumptions are made, analytic arguments 

are condemned to perpetual inconclusiveness. SED permits the analyst to ex- 

plore a space of problem representations by imposing or rejecting assumptions 

regarding the credibility and direction of an argument. Investigation of such 

a space may be utilized to develop the analyst's understanding of the problem, 

test the sensitivity of conclusions, and select a representation that suits 

the information requirements of intelligence consumers. 

numerical approaches to uncertainty regard conflict of evidence as 

it is bound to occur by chance some portion of the time when 

sources of evidence are imperfectly correlated with hypotheses. Thus, methods 

for combining evidence (e.g., Bayes' Rule or Dempsterls Rule) arrive at con- 

clusions by a process akin to averaging, in which different bits of evidence 

are aggregated. SED encourages an alternative point of view: that conflict 

of evidence can often be regarded as a symptom of erroneous assumptions in the 

arguments that contributed to the conflict. SED, therefore, uses conflict as 

an opportunity to learn, i.e., to diagnose and remedy errors in reasoning, and 

thus to develop improved arguments. 



The principal goal of this section is to explicate the concepts incorporated 

in SED. However, to keep the discussion from becoming too abstract, we shall 

do so in the context of a concrete application to an illustrative intelligence 

problem. Moreover, we will refer throughout to displays in a hypothetical 

computer implementation. It will be assumed that the user, an intelligence 

analyst, interacts with the implementation via a keyboard and a mouse and 

mouse button. The mathematical basis of the system is described in more 

detail in Appendices A and B. 

3.2 A Hvvothetical Intelligence Problem 

For historical and geographical reasons, the Soviet Union is extremely con- 

cerned about the military capabilities of West Germany. In particular, a 

major concern of the Soviets is that West Germany should remain a non-nuclear 

state. The Soviets have recently expressed concern through diplomatic chan- 

nels that the West Germans may be developing a nuclear weapon. The Soviet am- 

bassador has cited reports, believed to have originated in East Germany, of 

"peculiar activity" around a spent fuel pond at a West German reactor. The 

President's advisors have informed him of the Soviets' concerns, and have 

recommended that he gather information on the matter and formulate a reply to 

the Soviets. As a consequence, the President has called in the director of 

the Central Intelligence Agency and asked him to prepare a briefing on the 

question of whether West Germany possesses a nuclear weapon. 

The following items of evidence have been gathered for inclusion in the 

report. 

1. West Germany has signed the Treaty on the Non-Proliferation of 
Nuclear Weapons (NPT) as a non-nuclear weapons state. 

2. West German nuclear facilities are inspected by IAEA inspectors and 
West German nuclear material is under Agency safeguards. The Inter- 
national Atomic Energy Agency's (IAEA) Safeguards Implementation 
Report (SIR) stated that "materials under Agency safeguards in the 
year remained in peaceful nuclear activities." 

3 .  The West German government has recently and repeatedly made public 
statements against nuclear proliferation. 



4. The United States is committed under its NATO obligations to defend 
West Germany against attack. 

5. The United States has not received any reports suggesting the exist- 
ence of clandestine nuclear facilities or nuclear weapons tests in 
West Germany. 

6 .  A former inspector at a West German nuclear facility has testified 
that his reports of anomalous material account imbalances at a West 
German facility were covered up by the IAEA. 

7. The USSR, as noted above, has reported "unusual activity" in regard 
to a West German reactor. 

8 .  West Germany has lodged complaints about the frequency of IAEA in- 
spections. 

9. West Germany has lodged complaints about the frequency of IAEA in- 
spections. 

3.3 The Structure 0f.a Simple Evidential Argument 

In SED, items of evidence support conclusions only via arguments. The analyst 

is thus encouraged to state the reasons why a given conclusion might follow 

from a particular piece of evidence--not simply a number measuring the degree 

to which the conclusion is associated with that evidence. Arguments in SED 

will typically have a natural causal structure. Reasons for (or against) a 

conclusion reflect the analyst's understanding of the sequence of events and 

processes that go between what the analyst wants to know and the available 

evidence. Analysts naturally reason in terms of causal chains of this sort in 

order to evaluate the reliability and significance of a piece of evidence. 

The first step in an analysis is to structure the problem. In SED, this means 

(a) identifying the hypotheses about which the analyst is concerned, (b) iden- 

tifying the available evidence and (c) specifying the arguments which link the 

evidence to the hypotheses. Figure 1 illustrates the result of this process 

for evidence item 2, the IAEA report certifying that West German nuclear 

material has remained in peaceful nuclear activities. 



Figure 1: SED Display fo r  IAEA Argument in Non u er'cal Mode 
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As shown in Figure 1, the analyst has identified three relevant hypotheses: 

nuclear material has not been diverted, nuclear material has been diverted for 

the purpose of building a West German bomb, and nuclear material has been 

diverted to another country which intends to build a bomb. A given item of 

evidence may support any subset of these elementary hypotheses. For example, 

the IAEA report indicating no anomalous activity supports the conclusion (no 

diversion). However, the former inspector's report of a cover-up (evidence 

item 7) provides support for the subset of hypotheses (diversion for West Ger- 

man bomb, diversion to another country), since it points to diversion, but 

fails to discriminate between the two purposes for which the diversion might 

have taken place. By contrase, the commitment of the U.S. to West Germany's 

defense (evidence item 4) supports the subset (no diversion, diversion to 

another country) since it disconfirms the claim that West Germany would build 

a bomb for itself, but does not exclude the possibility that West Germany is 

assisting some other country. The conclusions of an argument are thus subsets 

of hypotheses; and these may be large or small depending on the power of the 

evidence and the argument based upon it to discriminate among the pos- 
U &I 

sibilities. A totally inconclusive argument is maximally imprecise; it has as 

a "conclusion" the universal set, consisting of all three elementary 

hypotheses. 

The star in Figure 1 under the hypothesis of no diversion indicates that the 

analyst intends to construct an argument, based on the IAEA inspection report, 

with the conclusion that no diversion has taken place. For the IAEA report to 

prove this conclusion, a variety of premises must be asserted. The analyst 

has enumerated these premises in the area labeled "Backing and Assumptions." 

These are the conditions which must be satisfied for the evidential link be- 

tween the IAEA report and the conclusion of no diversion to be valid. They 

are here stated in the form of "rebuttals" to that linkage; i.e., unless any 

of these conditions holds, the IAEA report proves no diversion has taken 

place. The analyst's argument is this: if there has been no successful con- 

cealment from IAEA inspectors, no opportunities for diversion of material 

during the absence of an inspector, no intentional falsification of data by 

the inspectors, no errors due to inspector incompetence, no hampering of in- 

spectors by nuclear plant personnel, no statistical error in the analysis of 

the data, and no bias in the interpretation of results, then the IAEA report 



proves that no diversion has taken place. 

The analyst constructs such a list by asking himself what factors could dis- 

rupt the causal relationships that ordinarily link the truth of different 

hypotheses with different types of evidence. For example, a typical causal 

chain would be : 

No Diversion + Inspectors + Inspectors + Data -r Conclusions + Report No 
Perform Make Analyzed Formulated Diversion 

Observations Reports 

Similarly, 

Diversion + Inspectors + Inspectors + Data + Conclusions + Report 
Perform Make Analyzed Formulated Likely 

Observations Reports Diversion 

It is by virtue of these causal relationships that the evidence (the IAEA 

report) covaries with the truth about the hypotheses regarding diversion (cf., 

Nozick, 1981). Each of the premises in the core argument is concerned with a 

different way that one of the links in these chains could break. 

Evidential arguments may be classified in terms of the type of causal connec- 

tion by means of which they link conclusions and evidence. Such linkages may, 

in principle, involve arbitrarily large and complex networks of causes and ef- 
S 

fect. In any case, they will not always be as direct or as simple as in the k 
h 

IAEA example; yet, they appear to fall into a small set of characteristic, 

recognizable patterns. 

The IAEA example involves evidence linked by a direct causal chain to a past 

set of events (i.e., incidences of diversion). A slightly more complex pat- 

tern occurs when the evidence and the event of interest are linked only by 

virtue of sharing a common cause. For example, suppose the question before 

the analyst is whether or not nuclear material is currently being diverted, 

and the most recent IAEA report pertains to inspections conducted a year in 



the past. A causal chain of the following sort links the IAEA report of 

likely diversion at time TI to the hypothesis of diversion in the present: 

Continued Continued 
Policy of + . . .  -+ Policy of 

/ 
Diversion 

\ 
Decision Diversion 
to Divert 

I 

~iverk ion 

Diversion 
(Time = T2) (Time - present) 

& 
Diversion -* Inspectors -+ Inspectors 4 Data + Conclusions -* Report 
(Time = TI) Perform Make Analyzed Formulated Likely 

Observations Reports Diversion 
at T1 

According to this argument, two causal sequences are operative, with a common 

origin in an earlier West German decision to divert. One is identical to the 

sequence discussed above, in which the significance of the IAEA report for 

past incidences of diversion is evaluated; the other addresses the causal con- 

tinuity of diversion policy and practice from that time to the present. An 

argument based on this causal structure would thus require additional premises 

to ensue that the second causal sequence is unbroken, i.e., to exclude factors 

or events during the past year that could have caused West German policy 

toward diversion to change (e.g., change in political leadership, change in 

perceived defense requirements). 

Another pattern of causal influence arises when the significance of an item of 

evidence depends in part on an analysis of the motivations and beliefs of 

other people. In such cases, the causal model that the analyst works with may 

include a "second-ordertt model that depicts a chain of reasoning about causal 

relationships in the heads of those other people. Making such second-order 

models explicit and judging the evidence or lack of evidence for their com- 

ponents may be an effective antidote to the danger of "mirror-imaging" (i.e., 

supposing that others act on the same beliefs and values that we do). For 

example, West Germany's economic dependence on nuclear power (evidence item 6) 

leads to a conclusion of (no diversion) via a chain of "mental events" 

(attributed conjectually to the West Germans): 



West -+ Predict -+ Predict + Predict -+ Conclude 
Germans Exposure Economic Undesirable Benefits of 
Hypothesize of Diversion Sanctions, Economic Divers ion 
Diversion Reprisals Consequences Do Not Outweigh 

Costs 

The validity of the argument based on evidence item 6 depends on premises that 

ensure that these links remain unbroken: that the West Germans believe ex- 

posure of a diversion would be likely, that they believe economic sanctions or 

reprisals would be adopted by other countries, that they believe undesirable 

economic consequences would in fact follow, and that they find these con- 

sequences unacceptable even in light of possible benefits from diversion. 

This chain, however, does not yet form a link between the analyst's belief 

that West Germany is economically dependent on nuclear power and the conclu- 

sion of (no diversion). Thus, it does not yet capture all the factors that 

bear on the validity of this inference. To do so, it must be elaborated in 

two ways. First, it must provide a more detailed account of the West German 

decision making process, linking it to West Germany's level of economic depen- 

dence on nuclear power. Note that (if this argument is valid) the analyst's 

beliefs in regard to West Germany's economic dependence and the West Germans' 

beliefs regarding their own economic dependence share a common cause: the 

ground truth economic situation; and the West Germans' beliefs on this matter 

will influence their prediction of the economic impact of sanctions and 

reprisals. Thus, we get: 



West Germans Predict 
Hypothesize -+ Exposure + 

Diversion of Diversion 

Predict Predict 
Economic Undesirable 
Sanctions, -+ Economic - + .  
Reprisals Consequences 

W. German West 
Data on -+ German 

West German Analys is 
Economy of Data 

West German 
-+ Conclusion of 

Economic 
Dependence 

on Nuclear Power 
West German 
Economic 
Dependence 
on Nuclear Power 

(U.S.) (U.S.) 
Data on (U.S.) Conclusion of 
West German -+ Analysis -+ Economic 
Economy of Data Dependence 

on Nuclear Power 

The bottom branch of this network reflects the analyst's own reasoning (or 

reasoning which he accepts) regarding West Germany's economic dependence on 

nuclear power; the middle branch reflects hypothesized reasoning by West Ger- 

mans on the same subject. Adding these two branches makes clear that the 

validity'of the argument based on evidence item 6 depends on the correctness 

of the analyst's inference that West Germany is dependent on nuclear power, 

and on the awareness of the West Germans themselves that this is true. 

Finally, these mental events can be embedded in a first-order causal model: 

West -+ Initiate -+ [...reasoning -+ Implement -+ No Diversion 
Germans Policy Debate as above.. . ]  Results of 
Propose About Diversion Policy Debate 
Diversion 

bringing out the dependence of the argument on a crucial additional set of 

premises: that the decision on diversion would in fact be preceded by and 

based on some sort of high-level policy debate (and not made, for example, by 

lower level, independently acting personnel). 



It is worth pointing out that, in interesting problems at least, no conclusion 

is really "proven", and any list of premises must always be regarded as 

provisional and incomplete. The analyst can choose the level of detail to 

which he carries the examination of any particular argument, and important 

contingencies may initially be overlooked or dismissed as improbable (e.g., 

could the IAEA report have been mistranslated?). Nevertheless, it is the ef- 

fort to construct casually based arguments of this sort which clarifies the 

basis for belief, leads to the discovery of hidden premises or assumptions, 

and provides a framework for revision of beliefs and assumptions when they 

lead to conflict. 

3.4 Beliefs and Assumptions 

The analyst may have evidence or knowledge regarding some of\-the--pr-emi=es of 

an argument, but it is unlikely that he will have evidence or knowledge 

regarding all of them. Premises about which the analyst is ignorant may 

nevertheless play a crucial role both in his understanding of and reasoning 

about the problem, and in decisions regarding the collection of further infor- 

mation. To the degree that knowledge is lacking, therefore, SED permits the 

analyst to make assumptions and to explore the implications of those assump- 

tions for the conclusions of the argument. 

SED may operate either in a non-numerical mode or in a numerical mode. In the 

first, belief in a premise is all or none. If neither a premise nor its nega- 

tion is believed, however, the premise (or its negation) may be assumed. 

In the numerical mode, on the other hand, belief is graded, i.e., belief in a 

premise may fall anywhere in the interval between 0 and 1. To the extent that 

belief in a premise and its negation fail to sum to 1, the analyst may make a 

decision regarding the allocation of the remaining uncommitted belief. Such a 

decision constitutes an assumption. Note that the non-numerical mode 

is a special case of the numerical mode, in which all belief assignments and 

assumptions are either 0 or 1. However, use of the non-numerical mode (a) may 

be a source of valuable insight into the logical structure of an argument, and 

(b) may be preferred by analysts in problems where there is a high degree of 

confidence, or when, for whatever reason, they do not desire to use numerical 



measures. 

Our exposition will begin with the non-numerical mode, for reasons akin to 

(a). Exploration of the basic logical forms that arguments take will clarify 

the functions that numbers perform and their meaning. Numbers will be intro- 

duced quite naturally as quantifications of the validity of the logical struc- 

tures created in the non-numerical mode. Numbers represent the chance that 

(non-numerical) arguments are valid. 

i 

An analyst may input both his beliefs and his choice of assumptions in the 

context of the display shown in Figure 1. In the non-numerical mode, the 

analyst indicates whether he believes a proposition to be false or true by 

pointing with the mouse at "Believe No" or "Believe Yes" respectively and 

clicking. If neither is believed with confidence, he may indicate his assump- 

tion that the proposition is false or true by pointing with the mouse at 

"Assume No" or "Assume Yes" respectively and clicking. 

Note that the premises in an argument can be expressed in either a positive or 

a negative manner, depending on the preference of the analyst. Thus, the fol- 

lowing two formulations are equivalent to one another: 

Statistical inadequacv 

Believe No A Believe Yes 

1 Assume No - Assume Yes - 0 

No statistical inadeuuacv 

Believe No A Believe Yes 

Assume No -0- Assume Yes 1 

Both formulations (in the context of the argument in Figure 1) represent the 

premise that statistical techniques are adequate; in both cases, the premise 

is assumed to be true. We referred to "Statistical inadequacy" (in the first 

formulation) as a "rebuttal," since acceptance of statistical inadequacy would 

invalidate the argument. 
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3.5 Manv Arguments From One 

In constructing a core argument, the analyst specifies a conclusion together 

with a set of premises, i.e., a set of propositions (such as "Statistical 

inadequacy") with associated credibility status (Believe Yes, Believe No, As- 

sume Yes, or Assume No). These premises are then regarded by SED as a core 

argument which proves the specified conclusion. 

In addition to the core argument, SED requests that the analyst specify the 

impact on the conclusion of changing the credibility status of each premise. 

This provides an economical, implicit specification of a large number of al- 

t e rna t i ve  arguments, each corresponding to a different change (or combination 

of changes) in the premises. In other words, given the core argument and the 

impact of changing any premise, SED can automatically construct a variety of 

other arguments based on the same item of evidence, but leading to different 

conclusions. To do so, SED utilizes presuppositions about the function of 

each premise in the causal chain linking conclusions and evidence. This 

capability enables the analyst to explore freely the implications of changes 

in his beliefs and assumptions; in addition, it permits SED to make recomrnen- 

dations regarding revision of assumptions and beliefs, and the collection of 

additional information, to resolve conflict. 

3.5.1 The im~act of negating a premise. SED provides a simple method of en- 

coding the potential impact of'changing a belief or assumption. The impact of 

rejecting a premise (in the non-numerical mode) is always: (i) to eliminate 

support for one subset of hypotheses, and (ii) to shift that support onto some 

other subset of hypotheses. Such impact may be of two kinds, depending on 

whether the effect is on the precision or the direction of the core argument. 

Impact on precis ion .  Rejection of a premise may remove, dilute, or enhance 

the bearing of the evidence on the hypotheses. Instances of the first type 

occur, for example, if IAEA inspectors are incompetent observers, if the 

sample size or statistical techniques applied to the data are inadequate to 

detect diversions, or if the IAEA always reports "no diversion" even if there 

is evidence to the contrary. In none of these cases does it follow that a 



diversion of nuclear material did take place. Rather, the IAEA report 

(evidence item 2) is deprived of evidential significance; the subset of 

hypotheses which it now proves is the universal set, i.e., the set consisting 

of all three elementary hypotheses. In short, the new argument tells us noth- 

ing regarding whether or not a diversion took place. This type of impact is 

indicated in the following way: 

No Diversion 
Diversion for West 

German Bomb 
Diversion to 
Other Country 

The first row represents the subset of hypotheses which loses support if the 

premise turns out to be false. The "0" means that support for the subset (no 

diversion) would be invalidated (reduced to 0% of its former value) if this 

rebuttal turned out to be true. The second row indicates the subset to which 

support is shifted. In this case, the belief deducted from (no diversion) is 

to be added to the subset consisting of all three hypotheses. 

Secondly, rejection of a premise may decrease the precision of an argument 

without totally invalidating it. For simplicity of exposition and display, we 

have recognized only two possibilities with regard to each premise: accept- 

ance or rejection. It may be desirable, however, to provide a more flexible 

representation of the negation of a premise. For example, we may wish to dis- 

tinguish several levels of competence of IAEA inspectors: ability to detect 

small amounts of diverted material, ability to detect large amounts of 

diverted material, and inability to detect even quite large quantities of 

diverted material. The core argument assumes the first (high inspector 

competence); negation of that premise, however, may lead to adoption of 

either of the other possibilities (moderate competence, low competence). Sup- 

pose further that building a West German bomb would entail diversion of large 

quantities of material, while aiding another country might involve diversion 

of significantly smaller amounts (since that country might have other sources 

of material in addition to West Germany). If then, the analyst were to reject 

the premise that IAEA inspectors are highly competent observers, and adopt in- 

stead the idea that they are moderately competent, support would be shifted 



from (no diversion) to (no diversion, diversion to other country). This im- 

pact is represented as follows: 

No 
Diversion 

Diversion for 
West German Bomb 

Diversion to 
Other Country 

The new argument (based on moderate competence of the inspectors) still has 

some force: it excludes the possibility of diversion for building a West Ger- 

man bomb, although it no longer excludes diversion to another country. 

Finally, rejection of a precision premise can enhance the force of an argu- 

ment. In the Figure 1 core argument, the analyst chose to make assumptions 

that maximized the precision of the conclusion (viz., he assumed that IAEA in- 

spectors were competent observers, that statistical methods were adequate, and 

that the IAEA reported results appropriately). Assumptions of this sort are 

made constantly and are often necessary if anything at all is to be concluded 

from the data. Nevertheless, on other occasions the analyst may wish to 

adopt worst case assumptions, at least initially. For example, information 

from a new, and as yet untested, source may be treated with suspicion until 

the source has proven to be reliable; or the analyst may wish to see how far 

he can get without utilizing certain data sources at all. Subsequent rejec- 

tion of these assumptions will increase, rather than decrease, the precision 

of the conclusion. 

For example, the analyst might construct a core argument with the following 

premise: IAEA statistical methods can only discriminate large amounts 

of diverted material. The conclusion of the new core argument, is (no diver- 

sion, diversion to other country). The impact of rejecting this premise, and 

adopting the view that IAEA statistical methods are highly discriminating, in- 

creases the precision of the conclusion by shifting support to (no diversion). 

The analyst may represent such impact as follows: 

Diversion for Diversion to 
No Diversion West German Bomb Other Country 



In sum, SED permits core arguments to be constructed at any initial level of 

precision. Rejection of a premise may then change the precision of a conclu- 

sion by shifting support to any "nested" subset, i.e., a subset which con- 

tains, or is contained by, the originally supported subset. 

Impact on direction. The second type of impact which negation of a premise 

may have is to change the direction of an argument. In this case, support is 

shifted from one subset of hypotheses to a subset which is, at least partly, 

inconsistent with the original subset. Such a change in direction might occur 

when the negation of a premise means that an observer, sensor, or a mode of 

analysis has a built-in bias. 

For example, the validity of the argument based on the IAEA report does not 

depend merely on the ability of the inspection and analysis processes to 

detect diversions of material. It also depends on the correct interpretation 

and non-deceptive reporting of what is detected. Thus, the analyst includes 

as a premise in the core argument, that IAEA personnel are not systematically 

biasing results in the direction of no diversion. If this premise were known 

or assumed to be false, then the IAEA report might say "no diversion" when the 

relevant data indicated that small amounts of diversion had taken place; and 

it might say that small quantities of material had been diverted when the data 

indicated that diversion had been substantial. This impact of negating the 

premise can be represented as follows: 

Diversion for Diversion to 
No Diversion West German Bomb Other Country 

The negation of this premise does not constitute an independent argument in 

favor of (diversion for West German bomb) or (diversion to other country); 

rather, it shifts the conclusion in a way which is conditional on the initial 

conclusion. Built-in biases thus depend on the core argument for their 

effect: they "deflect" it in the direction of a new conclusion. Note that 

the newly supported subset neither contains nor is contained by the originally 



supported subset. The impact of negating the premise is thus on the direction 

of the argument, not its precision. Automated sensors and analytical or 

statistical techniques, as well as human sources, may produce systematically 

erroneous conclusions, hence, are susceptible to biases of this type. 

Independent b i a s e s .  In other cases, by contrast, the negation of a premise - 
in addition to its effect on the precision or direction of the core argument - 
is in itself an argument for a different conclusion. This new conclusion is 

independent of the conclusion that otherwise would have followed from the core 

argument. For example (Figure l), suppose it is learned that there was 

deliberate concealment of certain nuclear plant activities from the IAEA in- 

spectors, providing opportunity for diversion of small quantities of material. 

In that case, the core argument based on the IAEA report is rendered less 

precise, i.e., support is shifted from (no diversion) to the subset (no diver- 

sion, diversion to other country). An additional result, however, is a new 

argument which independently supports the claim that diversion did take place, 

since diversion is a highly plausible explanation of the efforts at conceal- 

ment. The double impact of rejecting the premise of no concealment is repre- 

sented in the following way: 

No Diversion 
Diversion for West 

German Bomb 
Diversion to 
Other Country 

The revised core argument now points to (no diversion, diversion to other 

country); and a separate argument (with a single premise: that concealment 

occurred) is created which points to (diversion for West German bomb, diver- 

sion to other country]. The "I" associated with the third row means that the 

new argument for diversion based on concealment is independent, hence, does 

not depend on the conclusion of the core argument. 

The negation of a premise in an argument may sometimes provide independent 

support for an alternative conclusion only in conjunction with some additional 

preconditions. For example, deliberate concealment of nuclear plant ac- 

tivities proves diversion only if there is no other motive for concealment, 



e.g., protecting secret technology, or reducing disruption of plant routine 

caused by the presence of inspectors. If the analyst wishes to make these 

preconditions explicit, he can do so in SED by creating an entire new argu- 

ment, instead of using the single line ~bbreviation (with "I") as just il- 

lustrated. The conclusion of this new argument would be (diversion for West 

German bomb, diversion to other country); its premises are that deliberate 

concealment has taken place, that there is no motive to protect secret tech- 

nology, and so forth. 

3.5.2 Combination of information within an argument. - What if more than one 

premise is rejected, and the impact of negating each premise is support for a 

different subset of hypotheses? For example, the analyst may obtain evidence 

both that there was statistical error and that activities were concealed from 

IAEA inspectors. SED's ability to construct alternative arguments efficiently 

and automatically depends on its ability to exploit insights about the struc- 

ture of reasoning in problems of this kind. In principle, the number of al- 

ternative arguments can grow exponentially with the number of premises (since 

there are 2n combinations of acceptance and rejection of n premises). The 

burden on the analyst of assessing a separate conclusion for all those com- 

binations would be inordinate. Typically, however, there is an implicit pat- 

tern of independence and dependence among premises and their negations which 

considerably simplifies the assessment task. These patterns are based on 

plausible assumptions about the causal chains that link evidence and 

hypotheses, and the manner in which they are replaced or modified through the 

negation of different types of premises. 

If a core argument has n premises, then the analyst using SED need only 

specify n -I- 1 links between evidence and conclusions. The first link is the 

core argument, which associates the truth of the premises with the conclu- 

sion of the core argument: 

If P1 p2 & ... pn, then Co 

where the premises pi are propositions of any logical form (including 

negations) and Co is a subset of hypotheses; the truth of all the premises im- 



plies that the truth about the hypotheses of interest is contained in the sub- 

set Co. (Later, we shall generalize this formulation to include degrees of 

belief in different subsets fl+kqon The othsr links associate the nega- 
tion of each premise with an operation which substitutes a specified subset Si 

in the core conclusion by a specified alternative conclusion Ci: 

If -pl then S1 + C1 

If -p2 then S2 + C2 

If -pn then Sn -+ Cn 

Since any combination of premises could be negated simultaneously, 2n - 1 pos- 
sible alternative arguments are implied. The conclusion of any particular ar- 

gument is computed automatically by SED according to a relatively simple set 

of rules. The negation of a premise has a different effect depending on the 

type of the premise, i.e., on whether it concerns precision, built-in bias, or 

independent bias. 

Precision premises. The simplest ca e involves an argument in which only 

precision premises have been negate A causal chain linking different kinds d 
of evidence and different subsets of hypotheses will not produce "tracking" of 

hypotheses by evidence if any link in that chain is broken. Negating a preci- 

sion premise means that the discrimination addressed by the negated premise 

cannot be made regardless of the strength of the rest of the argument. When 

more than one precision premise is negated, the new conclusion is the enlarged 

subset of hypotheses that includes all the conclusions of the different 

negated premises, i.e., their set-theoretic union. 

For example, suppose there is evidence that inspectors are moderately incom- 

petent (i.e., are unable to discriminate small quantities of diverted material 

that might be associated with aiding another country to build a bomb); and 

also evidence that statistical techniques are seriously flawed (i.e., unable 

to discriminate even large quantities of diverted material). Negation of the 



first premise means the argument can no longer discriminate (no diversion) 

from (diversion to another country); negation of the second premise means the 

argument can no longer discriminate (no diversion) from either (diversion to 

another country) or (diversion for West German bomb). Negation of both 

premises results in support for the universal set, which includes all these 

possibilities. 

More formally, if p2, p4, and p5 are precision premises that are negated, with 

associated substitutions S2 + C2, S4 + C4, and S5 -+ C5, the new conclusion is 

the result of applying each substitution to the original core conclusion Co 

and taking the set-theoretic union: 

If -p2 & -p4 & -p5 and S2, S4, S5 c Co, then Co + Co u C2 u C4 u C5. 

Built-In Bias Premises. Matters are not quite so simple if built-in bias 

premises are also negated, resulting in changes of direction in the argument. 

In that case, it is necessary for the analyst to give somewhat more careful 

consideration to the causal model which underlies the argument. 

The simplest case of a causal chain linking conclusion and evidence consists, 

at least conceptually, of two "stages": a first stage in which data inputs 

are processed, discriminated, and categorized, and a second stage in which in- 

terpretations are associated with the results of the first stage and explicit 

outputs generated. More complex chains can be built up by repeated sequences 

of this sort: e.g., IAEA inspectors (1) make observations at nuclear 

facilities and (2) generate reports; then IAEA analysts (1') process and 

analyze the inspector's reports and (2') generate conclusions. This par- 

titioning of events is, of course, somewhat arbitrary. Nevertheless, it 

provides a simple framework for understanding the relative roles of precision 

and built-in bias premises and how they should be combined. 

Precision premises concern stage 1, and built-in bias premises concern stage 2 

of an evidential causal chain. SED deals with multiple negated premises by 

working backward within a chain, taking each stage 1 - stage 2 segment in turn 
and first removing the effects of any built-in biases (stage 2), then comput- 

ing the impact of prior failures to discriminate (stage 1). The result is a 



simple process of search for the possible ground truth situations that could 

have given rise to the observed evidence. 

For example, suppose that three premises have been negated in an expanded 

variant of the IAEA example: a precision premise regarding statistical error 

and two bias premises regarding the process of reporting conclusions from the 

statistical analysis. Suppose the impact of negating one bias premise bl, is 

to shift support from {no diversion) to (diversion to other country): 

Diversion for West Diversion to other 
No Diversion German Bomb Country K 

0 + I 

\o ~WSWG&& -3 @a ksmr 
1 

Looking at this in causal terms, the analyst knows or wishes to assume that 

IAEA personnel, confronted with results that in fact prove (diversion to other 

country), will report (no diversion). Similarly, the impact of negating the 

other bias premise b2 is to shift support from (no diversion) to (diversion 

for West German bomb 1 : 

Diversion for West Diversion to other 
No Diversion German Bomb Country 

0 + 
w w l n  + pe&- b$ ,p(, b,nB 

Here, the analyst knows or assumes that if IAEA personnel are confronted with 

data that in fact prove (diversion for West German bomb) they will report (no 

diversion). Finally, suppose negation of the precision premise pl shifts sup- 

port from (diversion to other country) to (no diversion, diversion to other 

country), and from (diversion for West German bomb) to (diversion for West 

German bomb, diversion to other country): 

Diversion for West Diversion to other 
No Diversion German Bomb Country 



In causal terms, the analyst is supposing that data which in fact prove (no 

diversion), as well as data which in fact prove (diversion to other country), 

could lead to a stage 1 IAEA conclusion of (diversion to other country); this 

conclusion at stage 1, therefore, fails to discriminate between the two situa- 

tions that could produce it. Similarly, data which in fact prove (diversion 

to other country), as well as data that prove (diversion for West German 

bomb), could lead to a stage 1 IAEA conclusion of (diversion for West German 

bomb) . 

What is the appropriate conclusion from the new argument resulting from the 

negation of these three premises? Another way of asking this question is, 

what are the possible "ground truth1' situations that could have led to the 

IAEA report of no diversion? The possible causal sequences impliedby the 

above negated premises are outlined as follows, where N = (no diversion), 0 - 
(diversion to other country), and W = (diversion for West German bomb): 

Ground 
Truth 

Stage Stage 
1 2 

(= IAEA report 
of no diversion) 

Note that the arrows represent the direction of causality, while the inferenc- 

ing process works in the reverse direction, moving from the "N" on the far 

right (i.e., the IAEA report of (no diversion)) to the possible original 
- 

ground truth situations on the far left. 

The negation of bl tells us that the report of no diversion could have arisen 

from results that prove (diversion to other country); the negation of b2 tells 

us that the report could also have arisen from results that prove (diversion 



for West German bomb). Correction for these two biases thus produces the set- 

theoretic union, (diversion for West German bomb, diversion to other country). 

Finally, negation of pl tells us that (diversion to other country) might have 

arisen from data that prove either (diversion to other country) or (no 

diversion), and (diversion for West German bomb) might have arisen from data 

that prove either (diversion for West German bomb) or (diversion to other 

country). Taking the set-theoretic union of these possibilities, we get the 

universal set, (no diversion, diversion for West German bomb, diversion to 

other country). The negation of these particular premises leaves an argument 

that tells us nothing about ground truth. 

Arbitrarily complex causal chains can be handled by precisely the same prin- 

ciples. For example, the evidence and an event to be inferred or predicted 

are often related to one another only by virtue of being causally related to 

some common third event. In assessing the possibility of current diversion 

based on a dated IAEA report of diversion in the past, both the evidence and 

the current diversion have their causal origin in a hypothetical past decision 

to divert material (Section 3.3). In that case, the search process begins at 

the evidence and works backward to the cause (e.g., a past decision to 

divert), just as in the IAEA example. It then works forward from that cause 

along the other causal chain to the event to be inferred (e.g., the present 

diversion). At each step, it transforms the current conclusion in accordance 

with any negated premises pertaining to that step, and takes the union of the 

result. The final conclusion of the argument is the set of all possible 

ground truth situations (in regard to the event of interest) that are causally 

consistent with the evidence. 

-Causal chains underlying evidential arguments may also involve parallel causal 

streams which meet. For example, in the argument based on West Germany's 

economic dependence (Section 3.3), The West German prediction of undesirable 

economic consequences depends simultaneously on (a) the causal chain in which 

the West Germans infer that they are economically dependent on nuclear power, 

and (b) the causal chain in which they initiate a decision-making process, 

predict exposure to diversion, and predict economic sanctions in response to 

such exposure. Rejection of a premise in either chain may lead to a final 

conclusion other than (no diversion). Here the inference process operates on 



the two causal steams in parallel, and takes the union of possible conclusions 

at the point where they meet. 

Built-in bias premises impose a somewhat greater assessment task on the 

analyst than an argument involving only precision premises. First, if mul- 

tiple stage l-stage 2 segments are included in a causal chain, the analyst 

must provide a crude temporal ordering of the segments. Secondly, if more 

complex causal structures are involved, the analyst must indicate the location 

of each premise within such a structure. Finally, the analyst must assess a 

larger number of potential impacts of negating a given premise. Since correc- 

tion of built-in biases changes the direction of the argument, the analyst 

must address the impact of negating premises on potential new conclusions of 

this sort, as well as on the original core conclusion. 

Independent bias premises. The negation of independent bias premises is a 

relatively simple case, since each negated independent bias premise represents 

a new causal chain linking a specified conclusion to evidence (in addition to 

any effects it has on the precision or direction of the core argument). If 

more than one independent bias premise is negated, each of the associated in- 

dependent causal chains is valid. Since the origin of each chain must be the 

same ground truth situation (albeit processed and interpreted in very dif- 

ferent ways), the new conclusion is the set-theoretic intersection or common 

element (if any) of the conclusions associated with the different negated 

premises. 

For example, suppose there is evidence that activities at nuclear facilities 

were concealed from some inspectors and also evidence that other inspectors 

falsified their reports. The first finding provides an independent argument 

for {diversion for West German bomb, diversion to other country). Suppose the 

evidence suggests that only inspectors from country X falsified reports. Then 

the second finding is an independent argument for {diversion to other 

country), i.e., diversion to country X. The only way that both new arguments 

can be valid, and both conclusions true, is for the truth to lie in their com- 

mon element, (diversion to other country). 

More formally, if three independent bias premises were negated, pl, p3, and 

3 - 2 4  



p7, with C1, C3, and C7 as their associated conclusions, the new conclusion is 

their intersection: 

If -pl & -p3 & -p7 then C1 n C3 n C7. 

3.6 comb in in^ Evidence From Different Arguments 

The display shown in Figure 2 helps the analyst appraise the significance of 

the combination of all 9 arguments which bear on the hypotheses of interest. 

Each argument represents an independent causal claim linking its evidence to a 

subset of hypotheses, since each argument is rooted in the same ground truth 

situation. The conclusion of the combined argument is simply the intersec- 

tion, or the common component (if any), of the subsets of hypotheses that are 

supported by the individual items of evidence. For example, if argument 1 

means that the truth is in the subset (no diversion), and argument 4 means the 

truth is in the subset (no diversion, diversion to other country), then if 

both arguments are valid, the truth must be in the intersection, (no 

diversion) . 

Under "Conclusions," SED displays all the conclusions that logically might be 

supported by the available items of evidence. These possible conclusions in- 

clude all the intersections of all the possible argument conclusions - under 

all combinations of beliefs or assumptions regarding the premises of the argu- 

ments. Thus, in this example, the possible conclusions from the given collec- 

tion of evidence are: (no diversion), (no diversion, diversion to other 

country) = not building a bomb, (diversion for West German bomb), (diversion 

to other country), and (diversion for West German bomb, diversion to other 

country) = diversion. 

Any conclusion that was actually supported by this combination of arguments 

would be shown with belief = 1.0. In this example, of course, the intersec- 

tion of the supported subsets of hypotheses is empty, since the items of 

evidence support conflicting, or non-overlapping, subsets. This is shown by 

the 0's corresponding to belief in the possible conclusions of the combined 

argument . 



Figure 2: SED Display for  Combining Multiple Arguments in 

Non-Numerical Mode 

Vl EW 

- - - - 
- - - -  

- - - - 

- - - - 
- - - -  

- - - -  
- - - -  
- - - - 
- - - - 
- - - -  
- - - -  
- - - -  
, - , - 
- - - -  

- - - - 
- - - - 
- - - - 

BELIEVE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

o 

0 

O 

O 

o 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1 .O 

1 .O 

1 .O 

1 .O 

1 .O 

1 .O 

1 .O 

1 .O 

1 .O 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CONCLUSIONS 

PRO CON 

{1,2,3,6] 7,a,9 

8 1,2,3,4,5,6 

14,5] f7,9] 7,2,3,6 

{4,5] 7,8,9 

f7,9) 1,2,3,6 

ARGUMENTS 

1. Signed treaty 

2. lAEA report 

3. Public statements 

4. US/NATO commitment 

5. No detection of facilities 

6. Economic dependence 

7. Coverup report 

. 8. USSR statement 

9. West German complaints 

CONFLICTS 

0 

f1,2,3,6] f7,8,9] 

t4,5] 8 

f1,2,3,6] 8 

HYPOTHESES 

No Diversion for Diversion 
Diversion West German to Other 

Bomb Country 

* 

* 
* * 

* I 

* 
* 
* 
* * 
* * 
* 

* * 
* 
I I 

0 0 

• 0 

0 



Figure 2 in conjunction with the detailed displays for each separate argument 

(such as Figure 1) functions as an "argument spreadsheet": changes in beliefs 

or assumptions in any of the arguments are propagated through the conclusions 

of those arguments to the conclusion of the combined argument. The analyst 

can retrieve any of the individual argument displays by selecting and clicking 

with the mouse on the appropriate line in the "VIEW" column. Alternatively, 

he can make changes directly to the conclusions of an argument in Figure 2, to 

examine the consequences of those changes for the combined conclusion. 

3.7 Conflict of Evidence 

Conflict in the non-numerical mode means that the user has contradictory 

beliefs or assumptions. SED helps him resolve the conflict by examining the 

assumptions and beliefs that underlie the conflict, revising them where ap- 

propriate, or collecting further information. Support for this process of as- 

sumption revision and testing is provided in two ways, corresponding to two 

rather different cognitive strategies: 

Global Conflict Resolution. The analyst may hypothesize a candidate solution 

and assess its overall acceptability, then go on, if he wishes, to hypothesize 

another candidate solution, etc. In this case, SED helps the analyst work 

backward from the hypothesized conclusion, asking what total consistent en- 

vironment of beliefs and assumptions would make that conclusion true, and what 

changes in his or her beliefs would be required to establish such an environ- 

ment. 

Local Conflict Resolution. On the other hand, SED may help the analyst decom- 

pose the conflict into components, look directly at each source of conflict, 

ask what changes in his or her assumptions or beliefs would eliminate that 

particular problem, and then go on to the next source of conflict. 

3.7.1 Construction of consistent ~lausible environments. In order to estab- 

lish a particular conclusion C, one or both of two actions may be necessary: 

(1) if no arguments currently support conclusion C, at least one argument will 

have to be revised by changing assumptions or beliefs so that it supports C; 



(2) if one or more arguments currently have conclusions that are inconsistent 

with conclusion C, each of them will have to be revised so that they no longer 

conflict with C. 

Associated with each possible conclusion in Figure 2, SED displays a "ledger" 

of reasons pro and con. The numbers refer to currently valid arguments; 

brackets represent an optional selection (or disjunction) of such arguments. 

In order to establish a given conclusion with no conflict, there must be at 

least one valid argument in the PRO column and no valid arguments in the CON 

column. Thus, the conclusion (no diversion) would be justified if any one of 

the arguments in the PRO column remain valid, i.e., argument 1 o r  argument 2 

o r  argument 3 o r  argument 6; and if a l l  the arguments in the CON column (i.e., 

7, 8, and 9) become invalid. The conclusion that a diversion to another 

country has taken place would be justified if e i t h e r  argument 4 o r  argument 5 

remains valid, and e i t h e r  argument 7 o r  argument 8 o r  argument 9 remains 

valid, and all of the CON arguments 1, 2, 3, and 6 become invalid. 

By choosing to VIEW the arguments referred to in this ledger, the analyst can 

examine and evaluate the environment of beliefs and/or assumptions that would 

justify any of these conclusions. As noted above, to derive the conclusion 

{no diversion) from the available evidence, the analyst would have to continue 

to accept argument 1 or 2 or 3 or 6 ;  to do that, in turn, requires accepting 

all the current premises in at least one of these arguments. He would also 

have to reject arguments 7, 8, and 9; to do that, he would have to reject at 

least one current premise in each of those arguments. 

The analyst will receive more detailed support if he points at and selects the 

VIEW line corresponding to a particular conclusion. The resulting new display 

will pinpoint the current assumptions that stand in the way of accepting the 

specified conclusion. In the present example, if the analyst indicates (no 

diversion), the display will show all the premises which are currently assumed 

true in arguments 7, 8, and 9, and indicate that at least one such premise in 

each argument must be rejected. In some cases, no change in assumptions will 

be sufficient to establish a conclusion consistently; in such cases SED will 

highlight the b e l i e f s  whose change would be required to justify the conclu- 

s ion. 



The analyst can thus gauge the plausibility of (no diversion) by reviewing the 

ways it could be derived; by breaking those possible derivations down into 

changes he would have to make in his current assumptions or beliefs; and 

evaluating the plausibility or acceptability of the total set of changes. 

Similarly, he can then examine the set of consistent environments that would 

justify any of the other possible conclusions, and judge the plausibility of 

the changes in assumptions or beliefs which those environments demand. 

SED thus helps the analyst resolve conflict by arriving at a full, coherent 

story rather than simply performing isolated assessments of individual 

premises. 

3.7.2 attack in^ the causes of conflict directlv. A second strategy is 

precisely the opposite: it attempts to diagnose and cure various components of 

the conflict separately. The conflict situation is broken down in three 

stages: first, what conclusions are in conflict; second, what arguments are in 

support of the conflicting conclusions; and third, what beliefs and/or assump- 

tions specifically cause the conflict among arguments. SED thus permits the 

analyst to identify "culprits" one by one for revision, in order to resolve 

the conflict. 

For example, the "Conflicts" portion of the display in Figure 2 shows that the 

following pairs of mutually exclusive conclusions are supported: ((no 

diversion) versus diversion), ({diversion for a West German bomb) versus (no 

diversion, diversion to other country)), ((no diversion) versus {diversion for 

a West German bomb)). It also shows the arguments which are pitted against 

one another in each particular conflict; e.g., acceptance of any one of argu- 

ments 1, 2, 3, and 6 in conjunction with any one of arguments 7, 8, and 9 

would lead to conflict between ((no diversion), diversion). 

I 

By choosing to VIEW one of these categories of conflict, the analyst receives 

a display that pinpoints its underlying causes, i.e., the beliefs and assump- 

tions whose..change would eliminate that conflict. For example, to resolve the 

([no diversion) versus diversion) conflict, the analyst must either (a) reject 

at least one premise from each of arguments 1, 2, 3, and 6, or (b) reject at 

least one premise from each of arguments 7, 8, and 9. 



Suppose the analyst discredits arguments 1, 2, 3 and 6. The third category of 

conflict ((no diversion) versus (diversion for a West German bomb)) has now 

also been resolved, and will vanish from the Figure 2 display. The only 

remaining conflict is ((diversion for a West German bomb) versus (no diver- 

sion, diversion to other country)). The analyst may now choose to VIEW the 

sources of this conflict, and evaluate potential changes in his assumptions or 

beliefs to resolve the remaining contradictions in his analysis. 

3.7.3 test in^ assumvtions. When an analyst is ignorant regarding the truth 

or falsity of a premise, he may nevertheless be able to identify methods of 

collecting information that would shed light on its status. Such methods can 

vary widely, and might include, for example, more detailed analysis of data 

from technical sensors, utilizing more powerful statistical techniques, query- 

ing human sources, searching a database, or scanning the open literature. Al- 

though in principle "more information is always good," in the real world the 

decision to collect more information by any of these means is virtually always 

associated with costs: e.g., a delayed product and, possibly, loss of oppor- 

tunities for action or policy. As a result, decisions may often have to be 

made on the basis of incomplete information and assumptions. 

Conflict among beliefs and assumptions is an important indication that the 

collection of more information may be worthwhile, since conflict means that 

some of those beliefs and assumptions must be mistaken. SED helps the analyst 

keep track of his or her information collection and analysis options and makes 

recommendations when such options could significantly contribute to the reduc- 

tion of conflict. 

In SED the analyst may associate with each premise a test or set of tests, 

i.e., information collection or analysis options that can shed light on the 

truth or falsity of that premise. Each test is associated in turn with a 

measure of its cost (in time, money, or some appropriate subjective measure) 

and with a set of possible outcomes of the test. Finally, each outcome is as- 

sociated with support either for the premise or for its negation. For ex- 

ample, in order to learn whether or not IAEA inspectors had been hampered in 

carrying out their duties, the inspectors might be interviewed. The outcome 



of these interviews would either involve testimony indicating interference or 

testimony indicating no interference. The cost of the interviews could be 

assessed as a weighted average of the time and money required to conduct them. 

SED's recommendations regarding potential tests work differently depending on 

the conflict resolution context. In the global mode, SED will indicate tests 

that could lead to a consistent environment of beliefs for the user-specified 

conclusion C. Such tests have outcomes that, if obtained, would support a PRO 
" t s  uv-J-- epqmeat for C (if no PRO argument is currently valid) and/or invalidate a 

currently valid CON argument. In the local mode, SED recommends tests that 

could eliminate the category of conflict under consideration. Such tests have 

outcomes that, if obtained, would discredit a currently accepted argument that 

contradicts some other currently accepted argument. 

In all cases, SED recommends tests in accordance with a utility measure based 

on both benefit and cost (see Appendix A). Benefit is defined in terms of 

potential reduction in conflict. In the numerical mode, however, where con- 

flict is all-or-none, this measure has little meaning: a test may be well 

worth performing even though it cannot eliminate conflict entirely. 

Prioritization among such tests becomes more meaningful when numerical degrees 

of conflict are recognized. 

If collection or analysis of new information is not a feasible alternative, 

the analyst can still reduce conflict by revising assumptions. SED can make 

recommendations to the analyst in this process of assumption management; 

moreover, if desired, SED can automate part of that process. These functions 

are based on two special types of test, called "query analyst" and "conflict," 

respectively. The analyst is free to associate either of these tests with any 

premise. In doing so, he indicates a desire that any assumptions made in 

regard to that premise should be sensitive to consistency with other beliefs 

and assumptions. 

If the "query analyst" test has been associated with a premise, SED will let 

the analyst know when a change in assumption regarding that premise would help 

establish a desired conclusion (in the global mode) or help eliminate a 

specific conflict (in the local mode). The "outcomes" of this test are, in 



affect, the decisions of the analyst. If the "conflict" test has been as- 

sociated with a premise, SED carries out the revision of assumptions automati- 

cally. 

Here, as in the case of testing more generally, meaningful prioritization of 

recommendations and automatic procedures requires numerical measures, to gauge 

the potential impact of changing assumptions on the degree of conflict. 

3.8 Addin~ Numbers to SED 

The non-numerical mode of SED, as discussed above, can serve an analyst as a 

source of valuable insight into the structure of a problem. It may also be of 

use in constructing an analysis, when the available evidence (or the willing- 

ness to make assumptions) is sufficient to warrant all-or-nothing conclusions. 

More often, however, evidence and the arguments constructed on their basis are 

inconclusive, and belief is graded rather than all-or-none. Thus, the numeri- 

cal mode of SED introduces the capability of assessing degrees of belief in 

the premises of an argument (and their denials), degrees of belief in conclu- 

sions, and degrees of impact of denying premises. As a result, a single argu- 

ment may simultaneously support multiple hypotheses or subsets of hypotheses 

to various degrees. A second result is that conflict among arguments also be- 

comes a matter of degree. 

Numerical measures may be added quite directly to the basic logical structure 

outlined above. A natural choice for that purpose are Shafer-Dempster belief 

functions, since (a) they focus on the validity of the link between evidence 

and conclusion (and permit quantification of the chance that an argument 

proves a conclusion), (b) conclusions are represented as subsets of 

hypotheses, (c) multiple arguments are combined (via Dempster's rule) by com- 

puting the chances for common components, or intersections, of their conclu- 

sions, and (d) a natural measure of conflict is provided by the chance that 

the intersection of conclusions is the empty-set. 

While-belief function measures will significantly enrich the inference struc- 

tures presented thus far, there is, we believe, a reciprocal benefit. The 

Shafer-Dempster calculus has been controversial in part, at least, because of 



the difficulty of assessing and understanding the required measures. More 

generally, there is a sense that any quantitative approach will fail to match 

people's intuitive ways of reasoning about uncertainty. Numerical measures, 

we contend, take on a greater degree of clarity and naturalness when they are 

associated with causally-based arguments of the sort we have described. 

3.8.1 Beliefs and assum~tions. A belief function is a measure of evidential 

support that assigns belief to subsets of hypotheses rather than (as in 

Bayesian probability theory) to the hypotheses themselves. As in probability 

theory, however, each support m(.) is between 0 and 1, and the sum of support 

for all the subsets must equal 1. The following table is an example of a 

belief function for the hypotheses in our illustrative intelligence problem: 

No Diversion for Diversion to 
m(.> gel(.) P I (  Diversion WestGerman Othercountry 

- 3 d  x 

Since there are three elementary hypotheses, there are z3-1=7 subsets of 

hypotheses for which support must be assessed (the empty set receives no 

support). m(.) represents the "basic probability assignment" or support 

measure. Shafer interprets it as the chance that what the evidence means is 

that the truth lies somewhere in the specified subset. In terms of our 

causal model of inference, m(A) is the chance that A is the set of ground 

truth situations causally linked to the evidence. 

The function Bel(-) summarizes the implications of the m(.) for a given subset 

of hypotheses. Bel(A) is defined as the total support m(-) for all subsets of 



hypotheses contained within A: 

In terms of our model, Bel(A) is the chance that A contains the set of ground 

truth situations causally linked to the evidence. 

The plausibility function PI(.) measures the degree to which the evidence 

fails to exclude a given subset. Pl(A) is the total support for all subsets 

that overlap with A: 

Thus, Pl(A) is the chance that A has at least some element in common with the 

set of ground truth situations causally linked to the evidence. 

Shafer's calculus provides a natural basis for defining the notion of assump- 

t i o n .  To the extent that support is assigned to subsets containing more than 

one hypothesis, the evidence fails to discriminate among those hypotheses. 

Tracing a causal chain from evidence to conclusions (in the manner of Section 

3 . 5 ) ,  we find branches where the correct causal path cannot be determined, and 

multiple possible causal origins must be recognized. These multiple pos- 

sibilities define the scope for assumptions. In particular, an assumption is 

the replacement, in part or whole, of a less precise conclusion by a more ex- 

act conclusion that is contained by it. Put another way, an assumption is a 

decision to reallocate support assigned to a set of hypotheses (i.e., support 

that is uncommitted in the respect to the members of the set) to one or more 

of its subsets. 

Suppose that the analyst has reasonably strong evidence (e.g., based on a 

recent study of procedures at the facility) that no opportunities existed for 

diverting materials during inspector absences. The analyst therefore assesses 

a belief of .7 in "Believe No" for the rebuttal, "diversion opportunities 

during inspector absence." Suppose in addition that there is no evidence sug- 



gesting the existence of such opportunities, so "Believe Yes" is assessed as 

0. The remaining belief (.3) automatically goes to the universal set, 

{diversion opportunities, no diversion opportunities), i.e., it represents a 

30% chance that the available evidence proves nothing at all regarding such 

opportunities. 

Diversion Ovportunities During Inspector Absences 

Believe No .7 Believe Yes 0 

Assume No .. 5 Assume Yes 

When evidence is insufficient to establish belief or disbelief in a premise, 

the analyst may make assumptions. In this regard, the numerical mode of SED 

is a natural extension of the non-numerical mode. To the degree that the sum 

of belief in a premise and its negation falls short of 1, the analyst is free 

to make assumptions about the allocation of any portion of the remaining, un- 

committed belief. For example, the analyst has a degree of belief of .7 that 

no opportunities occurred for diversion during inspector absences. By setting 

"Assume No" at .5 for this premise, he can assign half of the remaining .3 

belief to the proposition that no opportunities occurred. 

The advantage of specifying assumptions in terms of proportions, rather than 

absolute amounts, of uncommitted belief is that belief in premises may change 

as new evidence is acquired, while the assumption policy of the analyst 

remains unchanged. The analyst can set "Assume No" at any proportion p, and 

"Assume Yes" at any proportion q, as long as the sum of p and q is less than 

or equal to 1. Then proportion p of the uncommitted belief will be assigned 

by assumption to the proposition that no diversion opportunities occurred, and 

proportion q of the uncommitted belief will be assigned by assumption to the 

proposition that opportunities did occur; any remaining proportion, 1-p-q, 

stays uncommitted. 

3.8.2 A causal-model-based strategy for constructing numerical repre- 

sentation. The belief function concerning diversion of materials was quite 



complex (with 7 different subsets potentially receiving support), and would 

undoubtedly be difficult even for an expert to assess directly. In SED, such 

belief functions do not in fact have to be assessed. Instead, they may be 

constructed automatically by SED from the user's qualitative, non-numerical 

judgments regarding causal relationships, together with some far simpler 

numerical judgments of belief in premises. In this strategy, the analyst 

starts with what is, in effect, a non-numerical argument, i.e., a set of fully 

accepted premises and a definite conclusion. Each premise receives support 

totaling 1.0 either by belief or by assumption or by a combination of both. 

The conclusion of the core argument is a single subset of hypotheses, with 

support equal to 1. Similarly, the impact of rejecting each premise is 

specified as the all-or-none replacement of one specified subset by another. 

After the core argument has been specified, however, beliefs and assumptions 

may be allocated in any manner between the premise and its negations (or 

simply remain uncommitted). A graded conclusion, in which multiple subsets of 

hypotheses are assigned different numerical degrees of support, is then 

derived automatically by SED. 

For example, suppose the analyst begins by constructing the causally based 

core argument in Figure 1. Its conclusion assigns belief of 1.0 to (no 

diversion). Then he assigns belief of .2  to the claim that there is statisti- 

cal inadequacy in the analysis (premise 6). The result will be a new conclu- 

sion in which belief of . 8  is assigned to (no diversion), and belief of .2  is 

assigned to the universal set. 

Now suppose in addition that the analyst assigns belief of . 3  to the claim 

that there is bias in the interpretation of results (premise 7). Four dif- 

ferent situations are now possible: all premises remain true, only premise 6 

is false, only premise 7 is false, and both premise 6 and 7 are false. The 

techniques of Section 3.5 permit SED to determine what subset of hypotheses 

would be causally linked to the evidence under each of these conditions. The 

degree of support for each of those subsets is just the total support for all 

combinations of premises that have that subset as a conclusion. 

The following table summarizes the example: 



Degree of No Diversion for Diversion to 
Support Diversion West German Bomb Other Country 

All premises 
true .56 

Premise 6 
false .14 

Premise 7 
false .24 

Both premises 
false .06 

If all premises are true, the truth must be (no diversion); The chance of 

this is (1-.2)(1-.3) = .56. If only premise 6 is false, support goes to the 

universal set. The chance of this is (.2)(1-.3) = .14. Similarly, if only 

premise 7 is false, support goes to (diversion to other country), with chance 

equal to (1-.2)(.3) = .24. Finally, if both premises are false, support goes 

to the universal set. The chance of this is (.2)(.3) = .06. 

The result of adjusting belief in these two premises, therefore, is an alter- 

native argument that assigns .56 belief to (no diversion), .24 belief to 

{diversion to other country), and .14 + .06 = .20 belief to the universal set. 

The attractive feature of this assessment strategy is that it provides an ex- 

planation of the numerical support measures in the conclusion, in terms of the 

chances that various premises in the core argument are false. These numerical 

measures are constructe(rather .-- than directly aGesse>firom a perspicuous 

logical structure? The analyst delineates the basic causal structure of the 
A 

argument linking evidence and conclusion before he assesses any numbers. 

3.8.3 A more general numeric framework. Nevertheless, SED also permits a 

more flexible and general numerical representation of an argument. In this 

second approach, the conclusion of the core argument may involve assignment of 



degrees of support to more than one subset of hypotheses; and the conclusion 

associated with rejecting a premise may also involve assignment of degrees of 

support to more than one subset of hypotheses. In addition, the impact of 

rejecting a premise may itself be graded, i.e., it may result in only partial 

establishment of the conclusion associated with it. In this strategy, like 

the first, however, the analyst specifies a core argument with a set of fully 

accepted premises; the system will then automatically compute the effect of 

altering those beliefs or assumptions on the degrees of support in the conclu- 

sion. 

This strategy is appropriate under two conditions: 

a where a complete causal model, is impracticable or undesirable, and 

a where a statistical model is itself part of the causal chain linking 

evidence and conclusions. 

To illustrate the first case, we consider argument 4, based on the U.S. and 

NATO commitment to defend West Germany in case of attack by Warsaw Pact na- 

tions. Suppose that the cozlclusion of that argument is allocation of . 8  sup- 

port to the subset (no diversion, diversion to other country), and allocation 

of the remaining .2  support to the universal set. This conclusion rests on an 

argument to the effect that there is no perceived need for West Germany to 

build a bomb for itself. The argument rests on several premises: that the 

West Germans believe the U.S. would honor its commitments, that the West Ger- 

mans believe that the U.S. response would be sufficient for their defense, and 

that the West Germans are not expecting a cutoff in U.S. aid due to West Ger- 

man political factors (e,g., rise of the Green Party in West Germany). 

This argument does not provide all-or-none support for the conclusion that 

West Germany is not building a bomb (even if all the premises were true). 

Nevertheless, this core argument may still be thought of in causal terms, as 

reflecting premises that have not been made explicit. Such an implicit 

premise, for example, might be that West Germany does not have some reason to 

build a bomb other than self-defense or deterrence against the Soviet bloc, 



e.g., for prestige or for its effect on a conflict where U.S. and NATO commit- 

ments do not apply. In this example, of course, such premises could be made 

explicit and added to the core argument, thus permitting an all-or-none con- 

clusion. Nevertheless, it is not always desirable or even possible to 

enumerate explicitly all the preconditions of an argument; an argument can go 

wrong in numerous ways that either cannot be anticipated or which seem, in- 

dividually, too improbable to isolate for separate consideration. The ability 

to assess direct support for multiple subsets (including the universal set) in 

the core argument permits the analyst to summarize judgmentally the effects of 

such implicit preconditions. 

Rejection of a premise in this argument may also have a graded impact, for 

similar reasons. For example, if the West Germans do not have confidence 

that the United States will honor its commitments, then they might perceive a 

need to develop their own bomb; evidence to that effect would support 

(diversion for West German bomb). It would not, however, establish that con- 

clusion with certainty. The impact of rejecting this premise (that the U.S. 

will respond) could be represented by the analyst as follows: 

Diversion for 
No Diversion West German bomb 

Diversion to 
other country 

Rejecting the premise that the U.S. would respond reduces support for (no 

diversion) to 60% of its former value, and shifts the remaining support to 

(diversion for West German bomb). This graded impact can be understood as 

standing in for causal factors that, for whatever reason, the analyst has 

chosen not to make explicit. For example, to achieve 100% impact, it would be 

necessary to know that West Germany did not regard the threat of attack by 

Warsaw Pact nations as negligible, and that West Germany judged that the 

deterrent value of possessing its own nuclear capability was significant. 

We have illustrated the use of the general numerical approach as an abbrevia- 

tion for a more complete causal model. Its second function, however, is to 

represent arguments that appear to be inherently statistical. For example, 



historical data may suggest that the incidence of war is 20% when diplomatic 

exchanges of a certain type and frequency occur between two countries. Sup- 

pose then that exchanges of this sort are subsequently observed in a par- 

ticular case. The analyst may infer that the chance of war is 20%. 

In effect, this strategy involves adopting the fiction, or metaphor, that a 

chance set-up is part of the causal chain linking evidence and conclusions. 

In this example, the chance set-up is a common cause both of the exchanges be- 

tween the nations and (potentially) of the war between them: 

- War 
/" 

Chance 
set-up 

(P (war)- 2) 
I 
A Intense, hostile 

diplomatic exchanges 

t 
Historical 
Correlations 

Premises in this argument will concern all three of the branches in this 

network: i.e., are these errors in the sampling or analysis of the historical 

data? could the observed diplomatic exchanges be accounted for in some other 

way? and are there special conditions that would facilitate or hinder the in- 

itiation of a war? The latter two questions concern, more broadly, the issue 

of whether the present situation is representative of the historical data. 

To the degree that all premises are accepted, the conclusion will be a 

"Bayesian belief function," in which .20 support is assigned to (war) and .80 

support to (no war). Typically, however, careful evaluation will lead to the 

rejection of at least some premises, e.g., circumstances will be identified 

suggesting that the present situation is non-representative in certain ways. 

In such cases, the result will be a "discounted Bayesian belief function," in 

which support is assigned to (war) and (no war) in the ratio .2/.8, but some 

support is also assigned to the universal set, signifying the chance that the 



present argument is irrelevant. Approaching statistical inference in this way 

(a) permits the analyst to go beyond a literal acceptance of frequency data, 

and (b) allows him to integrate the results of statistical analysts with non- 

statistical processes of reasoning. 

3.8.4 ExDlorinv alternative re~resentations. A concern in communicating in- 

telligence results is to render them in as precise and unambiguous a fashion 

as possible. A key feature of SED is that it permits analysts to explore a 

set of alternative representations of the same argument, which differ among 

themselves in degree of precision and in degree of convergence on a single 

conclusion. Greater precision or convergence can be achieved at the cost of 

making assumptions. For example, by assuming that no opportunities existed 

for diversion of nuclear materials during inspector absences, the analyst pur- 

chases increased precision: i.e., more support for (no diversion), as opposed 

to support for the set (no diversion, diversion to other country). By assum- 

ing that biases did not occur in data analysis, he purchases increased 

convergence: i.e., exclusive support for (no divergence), as opposed to shar- 

ing support between the mutually exclusive conclusions (no diversion) and 

{diversion to other country). In assuming that inspectors were not hampered, 

he obtains both more precision and more convergence. 

We would contend that assumptions of this sort are inevitable in any 

analysis--that is, in any analysis of a reasonably complex issue that arrives 

at an intelligible conclusion. The important thing is not to avoid assump- 

tions, but to keep careful, explicit account of the assumptions that are made, 

to track their impact on the conclusions both of the particular argument in 

which they arise and the combined argument based on all the evidence, to alert 

the user in case of trouble, and to support careful revision of assumptions 

when appropriate. SEE is designed to support the analyst in this type of 

problem solving. 

An illuminating representation can be provided of the space of problem repre- 

sentations which SED can explore The two dimensions of the space are preci- '5 
sion and convergence. Yager (#MIr-504) has proposed measures of these dimen- 

sions for Dempster-Shafer belief functions. 



His measure of precision is: 

where mi is the support assigned to subset i and ni is the number of 

hypotheses which belong to i. P is at a maximum (equal to 1) when all support 

is assigned to elementary hypotheses, e.g., 

Belief 
Diversion for 

No Diversion West German Bomb 
Diversion to 
Other Country 

P is at a minimum (equal to l/n) where n is the total number of elementary 

hypotheses, when all support is assigned to the universal set. 

Yager's measure of convergence is: 

where mi is the support assigned to subset i and Pli is the plausibility of 

subset i. The key to high convergence is that every subset that has any sup- 

port also have high plausibility, i.e., that there be no support going to sub- 

sets that are incompatible with it. Thus C is at a maximum (equal to 1) when 

all support is assigned to nested subsets of hypotheses (hence, P1. = 1 for 
J 

subsets j in the nested series, and Pli = 0 for all other subsets i); e.g., 

Diversion for Diversion to 
Belief No Diversion West German Bomb Other Country 



Convergence is at a minimum (equal to l/n) when support is divided evenly 

among the elementary hypotheses. In "Bayesian belief functions," when all 

support is allocated to elementary hypotheses, C is a simple monotonic func- 

tion of Shannon's entropy measure. 

Figure 3 combines these two dimensions in a space of problem representations, 

and shows how assumptions can help the analyst arrive at a desirable location 

anywhere within that space. Bias assumptions typically move the repre- 

sentation toward greater convergence; precision assumptions typically move the 

representation to greater precision. The rejection of these assumptions, con- 

versely, will typically produce more imprecision and more divergence in the 

conclusion of an argument. Note that maximal imprecision and maximal diver- 

gence are mutually exclusive, since assigning support to large subsets makes 

it hard to assign support to many inconsistent subsets. 

An important side benefit of this framework is that it accommodates different 

uncertainty calculi as special cases. Figure 4 shows that Bayesian fuzzy, and 
J 

deterministic models of uncertainty are all located in this space. Bayesian 

models are maximally precise belief functions. Fuzzy models are maximally 

convergent (i.e,, nested) belief functions. Deterministic models are both 

maximally precise and maximally convergent. If he wishes, the analyst can 

construct a model of any of these types by making suitable assumptions. He 

may then investigate the success of that representation in terms of the con- 

flict it produces with other arguments and assumptions. 

3.8.5 The impact of numbers. As we have seen, incorporation of numerical 

measures into SED permits the analyst to represent gradations of belief and to 

manipulate statistical hypotheses. Even more importantly, however, it 

provides the possibility of a more flexible process of control over reasoning, 

in which the relative importance of different arguments can be weighed and the 



Figure 3: A Space of Problem Representations 
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Figure 4: Multiple Models of Uncertainty 
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culpability of different assumptions and beliefs in conflict more ap- 
i@- 

propriately assessed. In this sect-, after briefly reviewing Dempster's 
A -. 

Rule, we review the role of numerical measures in these functions. A more 

detailed description may be found in Appendix A. 

Combination of arguments. Dempster's Rule as a mechanism for combining argu- 

ments is a natural generalization of the approach in the non-numerical mode. 

It assigns support to the intersections, or common components, of the conclu- 

sions of the arguments being combined. If ml(A) is the support given to A by 

argument 1, and m2(A) is the support given by argument 2, the support that 

should be given to A by the two pieces of evidence is: 

The numerator here is the sum of the products of support for all pairs of sub- 

sets A1, A2 whose intersection is precisely A. The denominator is a normaliz- 

ing factor which ensures that m12(') sums to 1, by eliminating support for im- 

possible combinations. 

In causal terms, an argument supports a subset of hypotheses if it provides a 

causal chain linking that subset to the evidence. A given argument may sup- 

port more than one causal chain, if there is uncertainty about premises. To 

compare two such arguments, we consider all combinations of the causal chains 

from each argument. The meaning of each combination is the intersection of 

the subsets they support; and the chance of both of them being valid is the 

product of the support those causal chains receive from their respective argu- 

ments. 

Contribution to a conclusion. In the "Conclusion" section of Figure 2, 

reasons pro and con are provided for each possible conclusion. The numerical 

mode makes it possible to give a more sophisticated account of why a conclu- 



sion is believed. It displays a measure of the relative contribution 

PRO argument to current belief in that conclusion. (The measure is 

the products for all n-tuples of subsets which (a) have the specified conclu- 

sion as their intersection and (b) would not have the relevant conclusion as 

their intersection if the given argument were not included.) If the analyst 

wishes to resolve conflict by establishing a consistent environment for a par- 

ticular conclusion, he or she can use this measure to avoid the discrediting 

of arguments that provide key support, remaining free to reject arguments 

which provide only incidental support. 

Degree of conflict. The numerical mode provides a natural measure of conflict 

among arguments. This is 1 minus the normalization constant in Dempster's 

Rule, i.e., the sum of the products for all subsets whose intersections are 

empty. This measure is the probability of an impossible state of affairs 

(i. e. , nothing being true), given all our current beliefs and assumptions. 
The higher it is, therefore, the greater the pressure to modify some of those 

beliefs and assumptions to reduce the conflict (just as in classical 

hypothesis testing, if the probability of not obtaining the actually observed 

sample is very high given the null hypothesis, we tend to reject the null 

hypothesis). In short, SED interprets the conflict measure as evidence of 

mistaken beliefs and assumptions. 

In SED, the user may set a threshold on the conflict measure, indicating how 

much chance of error he is willing to tolerate. SED uses this measure in 

deciding when to initiate eonflict resolution procedures - -  i.e., recommending 
tests, querying the user, or automatically revising assumptions. 

Contribution to conflict. We saw that SED can provide a measure of the rela- 

tive contribution of an argument to a conclusion. In precisely the same way, 

it can provide a measure of the contribution of an argument to conflict (since 

conflict is "belief in the null set"). The analyst may use this measure to 

focus his or her attention on components of conflict where revision of beliefs 

or assumptions may do the most good. 

The benefit of testing or changing assumptions and beliefs. In conflict 

resolution, SED may make recommendations regarding the collection or analysis 



of further information. Such recommendations are based on an evaluation of 

each test in terms of its costs and benefits. The numerical mode makes pos- 

sible measures of benefit which represent the potential reduction in conflict 

obtainable by performing that test. 

Data Structures in SED 

The models of uncertainty supported by SED may all be represented within the 

constraints of the standard relational model of data (Appendix C). Here we 

briefly describe a set of data structures that appear to be adequate for this 

job. The convention we have adopted is a variation of the "entity- 

relationship" diagrams introduced by Chen (1976). This provides a higher- 

level characterization than standard relational schemas, and, as a result, a 

cleaner conceptualization of the basic semantic relationships in the database. 

However, there is an immediate, unambiguous translation into standard rela- 

tional structures. 

The convention of these diagrams is as follows. A box stands for an "entity 

relation"; roughly, this is a data table with a single key field and an ar- 

bitrary number of non-key fields which are referred to as "attributes." For 

example, in Figure 5, a table concerning human sources of information might 

use the name of the source as the key field (i.e., a unique identifier for 

each object or row in the table); it might also include such attributes (not 

shown) as age, address, length of service, etc. Attributes may be represented 

in the diagram by circles, which are connected by lines to the relations to 

which they belong. Diamonds are "relationship relations", i.e., data tables 

with compound key fields. For example, a table might have the name of the 

source as one component key and the number of a report as a second component 

key. Then each row of the table concerns the combination of that source with 

that report. In the diagram, the component keys in a relationship relation 

can be determined by looking at the entity relations which are connected by 

lines to the diamond. Small numbers next to those lines represent the seman- 

tic mapping between the keys. For example, in Figure 5 the "1" next to the 





Source line and the "n" next to the Reports line indicate that each source 

will be paired with multiple reports in that relationship relati'on. In the 

relationship relation involving objects and properties, however, each object 

may be paired with multiple properties, and each property with multiple ob- 

j ects . 

Figure 5 is a minimal intelligence database: it permits the analyst to store 

information about data and their sources, and also to represent hypotheses 

(i.e., object-property combinations) together perhaps with some measure of 

degree of belief (see Appendix C). What it lacks is any means for linking the 

data and the hypotheses by means of evidential arguments. 

Figure 6 provides an overview of the data structures introduced by SED for 

this purpose. Diagramming in this way dramatizes the role that arguments play 

in linking data (reports) to hypotheses via premises. 

A separate table stores information at the level of problems (e.g., "determine 

whether West Germany diverted nuclear material"). Attributes here might in- 

clude who is working on the problem, who requested the study, deadline for 

solution, etc. A relationship relation keeps a record of all the arguments 

that have been associated with each problem. Subsets of hypotheses are 

derived from the domain database of hypotheses. Each argument/subset combina- 

tion is associated with a degree of belief, i.e., the current support for that 

hypothesis from that argument. Similarly, each problem/subset combination is 

associated with a degree of belief, i.e., the combined support from all the 

arguments associated with that problem. Each argument is associated with 

premises, although the same premise may appear in more than one argument. 

Premises are associated with tests (to determine their truth or falsity), and 

tests are associated with outcomes. 

Figure 7 presents a somewhat richer picture of the attributes required for 

processing information in SED. Thus, each argument may be characterized by a 

conflict threshold (indicating how much conflict triggers various conflict 

resolution processes among the arguments associated with that problem) and a 

responsibility threshold (indicating degree of contribution to the conflict 

that is required before an assumption will be tested or revised). 
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Argument/subset combinations need to be characterized not only by the current 

belief, but by the belief assessed in the core argument as well (Bel(pl(H)). 

Each premise/argument combination is characterized by the location of the 

premise in the causal chain associated with that argument (i.e., what is the 

preceding or "Father" premise). Premises themselves are characterized by de- 

grees of belief and assumption, independently of the arguments they enter 

into. A very high level relationship relation characterizes the impact of 

negating each premise in each argument. This characterization includes pairs 

of subsets, one of which is reduced in support and the other of which is 

increased; the relationship relation has attributes corresponding to the 

degree of impact on each. Finally, tests are associated with costs and 

benefits. And outcomes of tests are associated with the degrees of belief in 

the premise and its negation which they support. 



4.0 CONCLUSIONS 

A major goal of SED is to support the processes of reasoning and methods of 

organizing data that are preferred and practiced by successful intelligence 

analysts, It does so in a variety of ways: 

by emphasizing qualitative causal models of how evidence is linked 
to conclusions; 

by permitting the development of simplified problem repre- 
sentations through the adoption (and testing) of assumptions; I 
by providing an "evidential spreadsheet" in which the implications 
of changes in beliefs and assumptions become readily apparent; 

by supporting an iterative process of argument construction, in 
which conflict is used as a cue to reexamine and revise 
assumptions ; and 

by supporting a strategy of hypothetical reasoning in which the 
plausibility of an overall coherent "story" can be assessed. 

Numerical measures, from this point of view, are quite incidental; they are 

means to the end of facilitating an effective and natural process of reason- 

ing. Indeed, SED minimizes numerical assessment and subordinates it to the 

process of constructing and manipulating qualitative arguments. 

A second major goal of SED, complementary to the first, is to capture what we 

perceive to be the strengths of recent theoretical work on uncertainty, 

without some of the weaknesses. 

The underlying representation of uncertainty in SED is Shaferian. The uncer- 

tainty calculus is a modification of belief function calculus which allows for 

assumptions and a non-monotonic backtracking capability. SED's belief func- 

tions arise out of a highly differentiated knowledge structure, patterned 

after Toulmin's model of argumentation. The underlying qualitative models 

giving rise to belief functions, associated with specific types of premises 

affecting their reliability, can be thought of as endorsements, in the style 

of Paul Cohen. 

Because it incorporates both belief function theory (with Bayesian theory as a 

special case) and possibility theory, SED can deal with uncertainty due to 



chance, to incompleteness of evidence, and to imprecision. The existence of 

numerical belief measures allows SED to overcome the inability of non- 

numerical theories (such as Toulmin's model, the theory of endorsements, or 

non-monotonic logic) to represent and manipulate gradations of uncertainty. 

The incorporation of qualitative theories allows SED to take advantage of the 

strengths of the qualitative reasoning ability of traditional A1 systems. 

Although its reasoning processes derive from belief function theory, SED in- 

corporates innovations that ameliorate some of the shortcomings of the 

Shaferian theory. An important difficulty for Shafer's theory is that it does 

not allow reassessment of the reliability of a source based on what the source 

says. SED allows assumptions about source reliability to be made; actual 

source testimony may then prompt reexamination of these assumptions. In the 

ideal case, any actual reassessment of source credibility is based on addi- 

tional evidence--the role of source testimony is as a trigger to test for that 

evidence. 

A second major difficulty of belief function theory is the inability of 

Dempster's Rule to handle cases where arguments are not based on independent 

evidence. In our experience, it is often reasonable to model non-independence 

as shared premises. Thus, SED provides an important feature that is lacking 

in traditional Shaferian systems: namely, a capability for representing non- 

independence between evidential arguments. 

A third property of belief function models, at least as they have appeared in 

the literature thus far, is "flatness." That is, application of Dempster's 

Rule assumes all input belief functions to be defined on the same hypothesis 

space. Thus, the theory appears not to support hierarchical inference. 

However, the tools of conditional embedding, minimal extension, and mar- 

ginalization allow the definition of a mechanism within Shaferian theory for 

hierarchical inference. The details of the Shaferian hierarchical inference 

model are given in Appendix B. 

As noted above, the SED system bears an important relationship to Doyle's 

(1979) non-monotonic logic. In non-monotonic logic, an A1 rule-based system 

is endowed with the capacity to make assumptions and draw conclusions based on 

the assumptions. When the system encounters a contradiction, it responds by 
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retracting an assumption to resolve the contradiction. Interest in Doyle's 

system has grown because of its similarity to human reasoning processes. 

SED endows an uncertainty calculus (the theory of belief functions) with a 

non-monotonic reasoning capability. As such, it is a very powerful theory. 

SED is endowed with a flexible self-reconciling capability that incorporates 

the strengths of non-monotonic logic. Yet SED counterbalances the weaknesses 

of non-monotonic logic by providing a measure of the strength of evidential 

support and an explicit prioritization for belief revision. 

Within Doyle's system, an assumption is a statement that is believed without 

proof. Assumptions are different from axioms (which are also believed without 

proof) because, although the system believes assumptions, it remembers that 

they are "only" assumptions, and drops them readily when it discovers they are 

responsible for contradictions. 

In SED, an assumption is defined as a rule for allocating uncommitted belief. 

The SED system reasons with the "assumed" belief functions (those with uncom- 

mitted belief allocated according to assumption), but it keeps track of the 

original belief functions. When it encounters conflict, the SED system goes 

through its assumptions, searching for tests to justify a reallocation of the 

uncommitted belief. 

In Doyle's system, the entities with which the system reasons are proposi- 

tions, or statements. In SED, the fundamental objects are belief functions. 

Note that in SED one can assign belief 1 to a conclusion. This is equivalent 

to a proposition (if evidence, then conclusion). In this sense, SED is more 

general than Doyle's system. 

The SED model can be though of as a very general "executive" for keeping track 

of the process of building and testing an evidential model. As such, SED has 

the potential to provide a formal theory for the (typically informal) process 

of model building and testing. DeGroot (1982) has said that a good statis- 

tician always reserves "a little pinch of probability" for the event that the 

model is wrong. In general, a good scientist will examine the output of a 

model, and, if the results are anomalous, will investigate alternative models. 

Previous attempts to model the "little pinch of probability" as a Bayesian 
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pinch have run into grave difficulty. How much is a big enough pinch? What 

is the space of alternate models, and how should one allocate the pinch among 

them? In the typical situation, the modeler adopts a parsimonious model; al- 

lowing even a small pinch of probability to arbitrary alternate models might 

result in a very unparsimonious model being adopted because it fits the data 

exactly . 

These problems disappear in the SED model. One need not worry about how much 

of a pinch to allocate; one simply assigns initial plausibility of 1 to the 

current working model. Model diagnostics (e.g., outliers) then play the role 

of "triggers" to search for alternate models. Indeed, alternate models may 

not even have been developed initially; they may be generated as a response to 

the existence of conflict. 

Of course, the credibility factor model has its own problems, such as finding 

a rationale for how much conflict is "enough" to trigger the search for alter- 

nate models. Still, it provides a valuable and very general framework for 

theorizing about the evidential reasoning process. 



APPENDIX A: MATHEMATICAL BASIS FOR THE SELF-RECONCILING EVIDENTIAL DATABASE 

Premises form the basis for the non-monotonic aspect of the Self-Reconciling 

Evidential Database. This is so because premises may be assumed true except 

to the degree that there is evidence for their negation. A problem, in the ar- 

gument (typically conflict, although as we shall see, there can be other 

problems) acts as a trigger to reexamine such assumptions and recommend fur- 

ther information collection in a non-monotonic belief revision process. 

A precision premise is a special case of a premise which when negated typi- 

cally acts to discount an argument (i.e., it weakens the strength of the argu- 

ment without changing its direction). We begin our examination of the theory 

by examining the simplest special case: a precision premise whose effect is 

t o ta l  discrediting of the associated belief function. 

Special case 1: Total d iscredi t ing.  Consider a belief function BelX over the 

set of hypotheses X. The associated basic probability function mX is a prob- 

ability distribution over the power set of X, and determines the belief func- 

tion as follows: 

for all subsets A of X. 

Let us suppose the existence of a premise p whose rejection would invalidate 

the belief function BelX. In other words, the belief function BelX applies 

only when p is accepted. If p is false, there is no information about the set 

X. Mathematically, this can be expressed by extending the belief function 

BelX to the set XxP, where P - {p,p) is the set indicating truth or falsity of 
the premise p. Denote the extended belief function by Bel,. Each focal ele- 

ment A of BelX is extended to the focal element (Ax(p) )u(xx(~)) of Bel,, with 

the basic probability assignment mX(A). The interpretation is that belief 

mX(A) is assigned to the set A if p is true, but to X (the universal set) if p 

is false. Belief assigned to X reflects the degree to which evidence does not 

discriminate among the hypotheses in X. 
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Now, suppose there is a belief function Belp over the set P, with correspond- 

ing basic probability function mp. The function Belp represents belief in the 

truth or falsity of the premise p. This function, too, is extended to the set 

XxP. The new focal elements are Xx(p), Xx(p) and XxP, with basic probability 

assignments mp((p) ) , mp((p] ) , and mp(P) , respectively. (This is called the 

minimal extension (Shafer, 1982), and reflects the judgment that the evidence 

on which Belp is based contains no information about X.) 

Assuming that the two functions BelX and Belp are based on independent 

evidence, we may combine the extended belief functions using Dempster's Rule. 

The combined belief function, denoted by Bel*, has three types of focal ele- 

ment. These focal elements are displayed in Table A-1. The first type of 

focal element represents belief in focal elements A of BelX and (p) of Belp 

Thus, to the extent that the evidence supports p, belief is assigned to focal 

elements of BelX. The second type of focal element represents belief in the 

falsity of the premise p; since BelX would be invalidated if p is rejected, 

all belief is assigned to X. The third type of focal element represents 

belief committed to neither p nor 5. In words, these focal elements represent 
belief in "A and p, or X and not p. 'I 

Table A-1: Focal Elements for Combined Belief Function 
(Total Discrediting) 

Focal Element of Eel* Basic Probability 

Premise true AX(p) 

Premise false xx(p) 
Premise unknown AX( (p) )~(Xx(p)) 

Since we are interested in the premise P only insofar as it affects belief 

about the hypotheses in X, the next step is to reduce Bel* to a new belief 

function over X. The standard Shaferian operation would be to form the mar- 

ginal belief function. Since the second and third types of focal element are 

consistent with the truth of any hypothesis in X, the result of marginalizing 

-s to assign their belief to the set X. That is, 



A focal element Ax(p) of the first type is consistent only with hypotheses in 

A. Thus, marginalization results in basic probability 

assigned to proper subsets of A. Thus, the marginal belief function is a dis- 

counted version of BelX, with discount rate 6 - 1-mp((p)) equal to the 

pausibilty that the premise is false. 

While this procedure is a correct application of belief function theory, it 

does not accord well with the human expert's process of provisionally adopting 

the belief function BelX, searching for discrediting factors only when 

prompted by conflict with other evidence. Marginalization treats the case 

where the truth of the premise is unknown as equivalent to the case where it 

is known to be false; i.e., it assigns all belief to the universal set X ex- 

cept to the extent that there is positive belief in the truth of the premise 

(in particular, when Belp is vacuous, so is the marginal of Bel*). 

In contrast, a human expert might adopt the belief function BelX except to the 

extent that there is positive belief in the falsity of the premise. Mathe- 

matically, this amounts to treating the third type of focal element in Table 

A-1 as if it were the first type. Equivalently, we may think of the belief 

function Belp as being provisionally replaced by a function which gives the 

universal set P no weight, but assigns belief mp((p))+mp(P) = Pl((p)) to the 

focal element (p), In other words, adopting p as an assumption is equivalent 

to assigning uncommitted belief to p. The result for the target hypotheses X 

is a discount rate 6 = mp((p)) equal to the belief committed directly to the 

falsity of the premise, p. 

Thus, by making assumptions, the analyst may choose to adopt the belief func- 

tion BelX so long as there is no direct evidence to the contrary. When con- 

flict occurs, SED helps the analyst in the process of examining and revising 
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such assumptions, or in searching for evidence that would increase belief in 
- 
p, thereby causing the discount rate to increase and conflict to decrease. 

This framework may be extended to two or more discrediting factors as follows. 

Suppose there are n premises, pl, ...,pn, such that the falsity of any one 

would discredit the belief function BelX. That is, conditional on p1Ap2 
- . . . ~p, the belief function BelX applies, but conditional on Plv. . .vp, the 

vacuous belief function applies. 

Suppose belief functions Beli are defined over the Pi - (Pi,Pi), and that they 
are judged to be based on independent evidence. Each Beli can be extended 

(using the minimal extension described above) to the product space Pix . . .  xPn. 
Combining these by Dempster's Rule produces a belief function Belp over the 

product space. Its focal elements are of the form Qlx ... xQn, where Qi is a 
focal element of Beli. Their basic probabilties are defined by mp(Q1x ... xQn) 
= m1 (Q1). .yJQn) 

Recall that the belief function BelX applies only when all premises hold; 

otherwise, the vacuous belief function applies. Suppose, as above, that the 

analyst wishes to assume the premises are true except to the extent they are 

directly contradicted by the evidence. The result would again be a discounted 

belief function, but this time the discount rate would be equal to the belief 

committed directly to the falsity of at least one of the pi. That is, 

The following theorem demonstrates that 6 is defined by: 

1 - f = I1 (l-Si)* 

Theorem Consider n belief functions, Bell, . . . ,  Beln concerning n premises 
PI,. . . ,Pn. Suppose each Beli is extended to the product space PIX...xPn 

- 
(where Pi = (pi,pi)), and these belief functions are combined according to 

Dempster's Rule into a belief function Bel. Then 



Proof: The result is clearly true for n - 1. Suppose it holds for n-1. Now, 

the plausibility that all premises hold is the sum of the basic probabilities 

of all subsets intersecting (pl,...,pn) - that is, of all subsets consistent 
with the truth of all the premises. That is, 

Since 1-6 is defined to be equal to Pl(pl~--.~pn) and to be P1(pi), Equa- 

tion (2) follows. 

A general theory of credibility factors. Thus far, the only consequence of 

rejecting a premise has been to discredit a belief function, i.e., to increase 

support for the universal set at the expense of an across-the-board reduction 

of belief in all other sets. Rejecting a premise may, however, have other 

effects; e.g., in changing the direction of an argument or causing support to 

shift from one focal element to another. 

As a prelude to introducing the general theory, let us reflect a bit more 

closely on the structure of the above model. The model says that conditional 

on the truth of premise p, belief function BelX applies; conditional on the 

falsity of premise p, the vacuous belief function applies. The combined 

belief function Bele is formed via the conditional embedding of these condi- 

tional belief functions into the space XxP (conditional embedding is discussed 

in detail in Appendix B). 



In the general model, we postulate that the falsity of premise p leads to 

belief function Bel;. Our model, in words, is "if p is true, then BelX; if p 

is false, then Bel;." In the special case described above, Bel; is vacuous. 

As before, we use conditional embedding to obtain a belief function on the 

product space XxP. The focal elements are of the form (Ax(p))u(Bx{p)), where 

A is a focal element of BelX and B is a focal element of Bel;. The cor- 

responding basic probability assignment is %(A)~;(B). 

As before, we introduce a belief function Belp over the space P, and again use 

the minimal extension to extend it to XxP. Combining by Dempster's rule 

yields the combined belief function Bel*. Table A-2 gives the resulting focal 

elements (compare with Table A-1 above). 

The focal elements of the marginal belief function are of two types: (i) a 

focal element of either BelX or ~ e l i  and (ii) the intersection of a focal ele- 

ment of BelX and a focal element of Bel;. The basic probability of a set A is 

given by : 

Table A-2: General Credibility Factor Model 

Focal Element of Bel* 

Premise true Ax(p) 

Premise false ~x(p) 

Premise unknown (Ax(p))u(Bx(p)) 

Basic Probabilitv Assignment m.&) - 

(Note: A denotes a focal element of BelX 

B denotes a focal element of Bel; ) 



If we choose to assume the truth of the premise to the extent consistent with 

our evidence, SED shifts all uncommitted belief to p before marginalizing. 

Belief in focal element A is now given by mM(A) =rnx(A)Plp((p))+m~(~)~elp((~)). 

Special case 2: Partial discrediting. It may be the case that the rejection 

of premise would only partially discredit a belief function. For example, 

even if we were sure that IEAE inspectors are incompetent, we may not wish to 

completely discount their report; instead, we might wish to discount the 

belief function for no diversion based on that report by a discount rate /3 

(where ,194). This corresponds to the case where m$ is a discounted version of 

mX. That is, m$(~) - (1-/3)mX(A) for all proper subsets A, and m;(x) - (1- 
/3>mX(X> + B .  

In this case, the focal elements of the marginal belief function are the same 

as those of BelX. Belief for proper subsets is given by 

Thus, the result is a discounted belief function, with discount rate equal to 

the product of and the belief in the falsity of p. (Note that this is math- 

ematically equivalent to a model which postulates that conditional on 5, there 
is belief /3 in the presence of some other factor which totally discredits 

BelX. Substantively, however, the partial discounting model often makes more 

sense. ) 

Special Case 3: Discrediting subsets. Sometimes we do not wish to discredit 

an entire argument; rather, we find that the presence of a discrediting factor 

simply results in our being unable to distinguish two hypotheses we had 

thought we could distinguish. 

In this case, the belief function Bel$ would be as illustrated in Figure A-3. 

Increasing belief in 5 then results in a proportionate decrease in belief in U 
and H, with the decrease being added to belief in (U,H); and a proportionate 

decrease in belief in {A,U) and (A,H), with the decrease being added to belief 

in (A,U,H). 



Basic Probability Assignment 

Focal Element Conditional on p Conditional on p 

Figure A-3: Example of Subset Discrediting 

Special case 4: Crediting It may be the case that we wish to make the 

provisional assumption that an argument is unreliable to some degree. In this 

case, belief in the falsity of a premise would serve to increase our con- 

f idence in the argument. We would then define the belief function m;(X) = 0, 

and m$(~) = mX(~)/(1-rn$(x)) for proper subsets A. That is, ~elE(-) is an un- 

discounted version of BelX. 

In this special case, increasing belief in the absense of the premise would 

result in relative belief assignments for all proper subsets remaining the 

same, but the mass on the universal set decreasing. 

Again, there is no reason why the falsity of a premise should completely 

remove uncommitted mass; we could have partial crediting in analogy to partial 

discrediting. Similarly, we could credit just a subset, reducing m(A) and 

allocating mass proportionately to subsets of A (where A is a proper subset of 



The General Model: Multiple premises. Again, the general model can be ex- 

tended to the case of multiple premises relating to an argument. Here, 

though, there are complexities that did not arise in the case of simple dis- 

crediting. Let us say that the belief function BelX applies under premises pl 

and p2. Invalidating pl leads to a new belief function l el;[; invalidating p2 
2 leads to BelX. Now, though, what happens when both premises are invalidated? 

The answer was simple in the case of total discrediting: if invalidating 

either premise resulted in shifting all belief to the universal set X, then so 

would invalidating both premises. But in the case of general belief functions 
1 2 BelX and BelX the answer is not immediately obvious. 

Let us step back to basic principles. In our original belief function BelX, 

assigning support mX(A) to the set A amounts to asserting, "the evidence un- 

derlying BelX means A with probability mX(A)". Invalidating a premise under- 

lying BelX would mean that some of the subsets we had thought the evidence 

might mean in actuality mean something else. 

Thus, the analyst might select any number of pairs of subsets and dis- 

count rates, with the meaning, "reduce belief in A to (l-ijA)mX(A)". The 

result will be a certain amount of probability that has been "removed" from 

subsets of X. (A default of SA" 0 means removing no mass.) The user then 

specifies a "recipient belief function"  el$(.) to which this belief is to be 
allocated proportionately among its focal elements. Thus, the belief function 

conditional on 5 is given by 

mz(~) = (1-6A)mX(A) + a m;(A) , where A = 1 JAmX(A) 

The interpretation is that there is probability (1-6A)mX(A) that the evidence 

means A and probability a that the evidence means the belief function m$. 

How does this interpretation of the belief function ~ e l g  help us? Let us con- 

sider the case of two premises, pl and p2. For each A we have a discount rate 

JA for p1 and -yA for p2. We also have recipient belief functions  el$ for pl 
and ~ e l g  for pp. 

As was the case for total discrediting, it seems reasonable to reduce belief 

in A to (l-6A)(1-~A)m(A). This results in belief 



to be reallocated. How should this belief be reallocated? 

- 
We have evidence (i.e. pl) indicating that belief should be reallocated ac- 

cording to ~ e l s  and evidence (i .e. p2) indicating that belief should be real- 
located according to Bel;. The evidence for p, is assumed independent of the 
evidence for p2 ; yet pl and p2 themselves are not independent in their impact 
on BelX, since they are part of the same causal chain. The natural action, if 

the premises were independent in their impact, would be to reallocate accord- 

ing to the orthogonal sum (i.e. apply Dempster's rule). However, instead of 

taking intersections of subsets, as in Dempster's Rule, we take unions, in ac- 

cordance with the causal structure discussed in Section 3.5. Thus, define 

Bel; as arising from the componentwise union of Bel; and Bel;. Then we have 

four conditional belief functions as described in the second column of Table 

A-4. 

Conditioning Premises Conditional Basic Probability Wei~ht 
of A 

Table A-4 

Given independent belief functions over the' premises, we combine them by 

Dempster's Rule. If both premises are assumed valid to the extent warranted 

by the evidence, the resulting belief function is a weighted average of the 

four belief functions in the above table, with weights given by the third 

column of Table A-4. 

We may think of the (1-yA) (1-sA)rnX(A) as the portion of BelX which is unaf- 

fected by the premises, and which should therefore be "protected" from com- 

bination with respect to pl and p2. That is, pl and p2 constitute evidence as 



far as ÿ el$ and ~ e l g  are concerned, but not for the "protectedn portion of 
BelX. 

Premises affecting more than one belief function. To this point, it has been 

assumed that premises affect only one belief function. In general, this might 

not be the case; for example, incompetence of IAEA inspectors might discredit, 

beliefs about reactor safety as well as materials diversion. 

Let us begin by considering the simplest case: suppose we are combining two 

belief functions, Bell and Be12, defined over the space X. Suppose that the 

premise p, if invalidated, would act to discount Bell by discount rate 61 and 

Be12 by discount rate 6*. Suppose that there is belief b in the falsity of 

premise p. 

The combined belief function over X is obtained as follows. First we combine 

belief functions Bell and Be12 by Dempster's Rule. It turns out that the com- 

putations are simpler if we carry them through without normalizing 

(normalization would serve to force all final basic probabilities to sum to 

1). The basic probability assigned to the set A before normalization is given 

by 

This is an unnormalized version of the combined belief function conditional on 

p To obtain the combined belief function conditional on 5, we combine the 
discounted belief functions mf and ms. Again before normalization, we obtain 

The final marginal belief assignment is obtained by giving weight 1-b to (4) 

andb to (5). 



(Note that (6) still represents beliefs before normalizing.) 

If instead we had discounted Bell by discount rate b61 and Be12 by discount 

rate b62 (acting as if two independent premises were operating, instead of a 

single premise), we would replace Ji in Equation (5) by b6i to obtain 

The only difference between (6) and (7) is that the term b6162 in (6) is re- 
2 placed by the quadratic term b S162 in (7). This term becomes more important 

as the "worst case" discount rates and 62 become closer to 1. 

Thus, when the same premise affects different belief functions, we cannot dis- 

count the belief functions individually and then combine them. Rather, we 

combine them with no discounting, combine them again with maximum discounting 

(i.e. assuming p is false), and form a weighted combination of the two resul- 

tant belief functions. 

Here we considered only a simple special case. In general, a given premise 

might apply to different belief functions at different points in separate 

lines of inference in a hierarchical structure. The same general principle of 

combination applies : combine conditional on p , combine conditional on 5, and 
form a weighted combination of these two belief functions. 

Initiation and prioritization of the search for information. The non- 

monotonic conflict resolution procedure in SED is invoked when there is con- 

flict between items of evidence being combined. In Doyle's (1979) non- 

monotonic logic, conflict is an all or nothing proposition--it occurs when 

both a proposition and its negation have been proven. In SED, there are 

gradations of conflict--two arguments conflict to the extent that they point 

toward contradictory hypotheses, even though the system cannot "prove" either 

hypothesis for certain. Thus, SED requires a measure of the degree of con- 

flict between evidential arguments. 

Fortunately, the Shaferian calculus provides a natural measure of conflict. 

When two or more belief functions are combined via Dempster's Rule, support is 

allocated to a hypothesis according to the extent that each individual belief 



function lends support to the hypothesis. To the extent that the belief func- 

tions support contradictory hypotheses, support is allocated to the null set, 

and the resultant belief function is then normalized so that belief in non- 

null sets sums to 1. This mass assigned to the null set provides a natural 

measure of the conflict between lines of reasoning. When belief functions 

Bell, . . . ,  Beln are combined, the weight of conflict, denoted symbolically by 
pc, is given by the formula 

where mi(Ai) is the basic probability assignment of belief function i to the 

set Ai. 

When, during its process of combining evidence, SED encounters conflict 

greater than a threshold tc, the conflict resolution mechanism is invoked. 

This "trigger" threshold can be set in advance, or adjusted dynamically by the 

user. Alternately, the user may reject the idea of a fixed threshold, prefer- 

ring to examine the output of inferences and decide, in context, whether the 

level of conflict is acceptable. 

The conflict resolution procedure is, in effect, a mechanism for reaching 

within the arguments leading to each of the five belief functions in an at- 

tempt to identify potential weaknesses in the arguments. When such weaknesses 

are identified, the corresponding belief functions are discounted, leading to 

reduction in conflict. As long as potential weaknesses can be identified, the 

process of conflict resolution continues until conflict is reduced to below 

tc 

The first step of the conflict resolution procedure, the search for discredit- 

ing factors, is initiated when conflict exceeds the threshold tc, and consists 

of the following five stages. 

i. Decide which discrediting factor for which belief function is the 
provisional "culprit" and which test to perform on the culprit. 
(This step is the crux of the algorithm, and the selection criteria, 
based on a benefit/cost tradeoff, are described in detail below.) 
If no culprit can be found, move to Steps 2 and 3 of the conflict 
resolution procedure. 



ii. Perform the test and revise belief in the appropriate discrediting 
factor. 

iii. Compute a revised discount rate and apply it to the culprit belief 
function, resulting in a new belief function. 

iv. Recombine the belief functions according to Dempster's Rule. The 
result is a new combined belief function, and a new measure of con- 
f lict . 

v. If conflict is below tc, stop. Otherwise, return to i. 

The choice of which test to perform is based on a tradeoff between benefit and 

cost. Recall that each test has associated with it a cost of performance; 

this cost is to be traded off against benefit as measured by the potential for 

conflict reduction (the benefit measure is discussed in detail below). There 

are many possible tradeoff functions (e.g., a simple linear weighting of 

benefit and cost, or choosing the test with the highest benefit per unit cost, 

subject to a minimum benefit threshold). Alternatively, the system could 

present a list of the most promising tests (i.e., ones clearing thresholds on 

both benefit and cost), letting the user trade off informally. 

The benefit of performing a test is to be defined as its potential for con- 

flict reduction. This can be separated into two parts: the impact of the 

test result on the discount rate, and the impact of changing the discount rate 

on conflict. Thus, a test is beneficial to the extent that it has potential 

for increasing the discount rate, and to the extent that increasing the dis- 

count rate reduces conflict. We discuss the impact of discounting on conflict 

first . 

The impact of changing the discount rate on conflict is measured by the par- 

tial derivative of conflict with respect to the discount rate. Mathemati- 

cally, the reduction in conflict when a belief function is discounted is a 

linear function of the discount rate 6. To see this, rewrite Equation (8) as 

follows . 

where we write ~ ~ ( 0 )  for the level of conflict when there is no discounting. 
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Now, suppose Bell is discounted by the rate 6. This means that ml(A) is re- 

placed by (1-6)ml(A) for all proper subsets A, and ml(X) is replaced by (1- 

6)ml(X)+6. The new weight of conflict becomes 

which can be rewritten (combining terms) as 

This function is linear in the discount rate 6. 

The partial derivative of pc with respect to 6 is then 

In words, this is the difference between the conflict when all (undiscounted) 

belief functions except Bell are combined, and the conflict when all 

(undiscounted) belief functions are combined. This derivative is always nega- 

tive. 

The other aspect of benefit is the test's potential for increasing the dis- 

count rate. The change in the discount rate will depend on which test result 

occurs. Benefit must therefore be defined in terms of the outcome of an un- 

certain event. 

Information about which test result will occur is expressed by a belief func- 

tion over test results. This belief function will be vacuous if there is no 

such information. We may interpret the basic probability m(R) for a set R of 

test results as the probability that our evidence means the result will be in 

R. Suppose there were some number 6(R) such that belief in R justified belief 



in the discount rate 6(R). We could then say our evidence justified belief in 

the discount rate 

for the test t. 

Unfortunately, R will in general contain many test results, each with a dif- 

ferent discount rate. There is no unique way to define a discount rate im- 

plied by belief in R. 

We may, however, adopt one of several possible decision attitudes. Each of 

the following decision attitudes has implications for how 6(R) is chosen. 

1. Pessimism. Belief in R should justify belief in a discount rate of 
at least 6(R). We therefore define 6(R) as the minimum discount 
rate associated with a result in R. 

2. Optimism. Belief in R should imply a discount rate that could be as 
high as 6(R). We therefore define 6(R) as the maximum discount rate 
associated with a result in R. 

3. Conservatism. To the extent that there is no information to distin- 
guish them, all results should be treated equally. We therefore 
define 6(R) as the average discount rate associated with a result in 
R. 

We are now ready to define the benefit measure. The test t tests for presence 

of some discrediting factor associated with belief function Beli. The initial 

discount rate for Beli is tii. The derivative of the conflict p with respect 

to 6i is pi. Assuming one of the above decision attitudes, the discount rate 

associated with test t is S(t), as defined in Equation (12). The benefit of 

performing test t is then defined as 

The negative sign occurs because conflict varies inversely with discount rate 

(i.e., pi<O.) 

The benefit of performing test t can be thought of as the value of acquiring 

the information contained in the test result. Thus, we can think of Equation 



(13) as an analogue to a Bayesian value of information computation. Note that 

the goal here is conflict reduction. We might argue that conflict reduction 

is not itself of intrinsic worth--we wish to reduce conflict in order to im- 

prove the quality of inferences, which, in turn, might be used to make deci- 

sions that affect an ultimate goal. Should we not then compute the value of 

information in terms of this ultimate goal? We respond by noting that this 

computation would be exceedingly complex. At any rate, the intelligence 

analyst process does not always have full access to the policy decisions that 

will be effected by A. Moreover, is not the abovementioned "ultimate goal" 

itself merely a subgoal of some still higher goal? Slicing the problem so 

that benefit is defined in terms of conflict reduction has the advantage of 

modularity and simplicity. 

A second comment is the absence of a unique way of measuring value of, informa- 

tion (or any other kind of expectation) in a Shaferian system. Each of the 

decision attitudes described above corresponds to a rule for allocating the 

uncommitted belief so as to collapse the belief function into a probability 

distribution. Pessimism corresponds to allocating all uncommitted mass to the 

lowest discount rate consistent with the evidence. Optimism corresponds to 

allocating it to the highest rate. Conservatism corresponds to portioning un- 

committed mass equally among all compatible test results. 

Benefit is traded off against the cost y(t) of performing test t. One pos- 

sible tradeoff function is 

u(t) = if b(t) < threshold benefit 

b(t)/y(t) otherwise . r 0  , 

If a test is found for which u(t) > threshold utility, then NMP performs the 
one for which u(t) is maximized (i.e., for which benefit per unit cost is 

maximized). Otherwise, no test meets criteria. This could happen because no' 

test has the potential for significant conflict reduction, because all tests 

cost too much to perform, or because all possible tests have already been per- 

formed . 

The second phase in the conflict resolution procedure is to search for addi- 

tional information (other than discrediting factors). This could include 



testing for c r e d i b i l i t y  factors  whose presence would increase (rather than 

decrease) the strength of an argument or change its overall direction. This 

could also mean collecting unrelated evidence (as represented by a new belief 

function to be combined with the other belief functions). 

To prioritize the search for information, a measure of the impact of the new 

evidence is needed. In the case of credibility factors, this is a 

straightforward extension of measuring the impact of discrediting factors 

(since credibility factors are generalized discrediting factors). In the case 

of independent evidence, we require a model of beliefs about the impact of the 

evidence. 

Typically, the result of this phase will be an increase in conflict, but we 

hope that the information will help us discover which of the component argu- 

ments is most likely to be flawed. Thus, our criterion in evaluating the 

value of the new information will be its ability to discriminate competing ar- 

guments. 

This could be operationalized by clustering the belief functions into groups, 

such that within-group conflict is low and between- group conflict is high. 

New information would be sought that was judged likely to provide information 

that distinguished these groups. That is, we seek information that would be 

expected to keep within group conflict low. We would expect (and therefore, 

we would not penalize) a concommitant increase in between group conflict. 

Information search. Thus far, we have considered only conflict as a possible 

trigger for the search for information about the presence of credibility fac- 

tors. Other triggers are possible. One important situation concerns the case 

when a final belief function has too much uncommitted mass. In other words, 

we are unable on the basis of current evidence to arrive at a definite conclu- 

sion. This event might trigger the search for crediting premises (or, perhaps 

more commonly, for additional independent evidence). Similarly, corroboration 

between two sources (i.e. more agreement than we had expected) might trigger 

the search for crediting factors (i.e. evidence that the arguments were more 

reliable than we had thought), 



Implications for belief function framework. We noted in Section 2 that a 

serious shortcoming of the Shaferian approach was the inability to reassess 

the quality of a line of evidential reasoning based on the content of the 

evidence (i.e. on whether sources corroborate or contradict each other). The 

credibility factor model gives us the tools for overcoming this shortcoming. 

Suppose we have two belief functions Bell and Be12, which represent our cur- 

rent assessment of the impact of two lines of argument. Suppose we judge that 

one or both of them are affected by certain premises, but we have no evidence 

that they are invalid. 

Now, suppose we combine Bell and Be12 by Dempster's Rule, and suppose they are 

in conflict. The conflict triggers the search for evidence against underlying 

premises. Such evidence would, if found, downgrade the assessed reliability 

of the arguments. Similarly, excess corroboration might trigger the search to 

invalidate other premises to upgrade reliability. 

As described here, the content of the evidence (i.e. conflict or 

corroboration) served only as a trigger for the search for new evidence. It 

is this new evidence, and not the content of the original evidence, that 

changes our estimate of the reliability of the sources. Thus, we maintain the 

independence assumption upon which Dempster's Rule is based. 

There may be times when we cannot find "hard" evidence against a premise, but 

the existence of conflict leads us to question the reliability of our sources. 

The overall discounting phase of conflict resolution provides a case in point. 

We assign a premise to each argument, termed "conflict with other arguments 

is not too great". When there is significant conflict, belief in this premise 

decreases and all arguments are discounted. 

This procedure can be explained within the language of non-monotonic logic. 

In a non-monotonic system, there are certain default assumptions (e.g. the 

reliability of certain arguments). When conflict renders these become in- 

operative, and the system typically specifies alternate assumptions (in our 

system, alternate allocations of uncommitted belief) to replace them. Thus, 



using conflict to revise beliefs (absent "hard" evidence) amounts to replacing 

one default assumption about how to allocate belief in (*,p) (allocate all of 
it to p) with another (allocate some of it to 5). 



APPENDIX B: HIERARCHICAL INFERENCE IN A BELIEF FUNCTION MODEL 

B.l A Single Chain of Evidence 

It is often the case that an evidential argument proceeds in a series of 

steps. For example, we receive a report that leaves have been canceledfor 

Warsaw Pact troops. The report lends support to the hypothesis that leaves 

have in fact been canceled, the degree of support depending on the credibility 

of the source. The event that leaves have been canceled lends support to the 

hypothesis that Warsaw Pact personnel are in a state of readiness, which, if 

true, lends support to the hypothesis that Warsaw Pact troops have been mobi- 

lized. 

Shaferfs theory of belief functions provides a natural representation of the 

idea of evidential support. For example, the degree to which cancellation of 

leaves supports personnel readiness would be represented by a belief function 

over the possible degrees of readiness, conditional on the event that leaves 

have been canceled. Such conditional belief functions can be specified at 

each stage of the hierarchy. This section explains how to "chain up" the 

hierarchy to obtain a belief function over the set of hypotheses at the ter- 

minal point of the chain. Also considered are the assumptions underlying the 

procedures. 

Figure 1 illustrates a chain of argument linking observed evidence e (e.g., 

the report of leave cancellation) to a set H of hypotheses of interest (e.g., 

whether or not Warsaw Pact troops have been mobilized). The evidence e and 

hypotheses H are linked through a number of sets of intermediate hypotheses 

(X, Y, . Z). The idea of a chain is formalized as follows. The evidential 

link between consecutive sets in the chain is formalized by a conditional 

belief function (e.g., Belylx in Figure 1). These conditional belief func- 

tions represent degrees of belief over Y implied by each element xeX. We also 

have a bottom-level belief function BelX, representing the implication of the 

evidence e for X. 

The validity of the methodology to follow depends on the following assump- 

tions. 





1. The evidential link between any two adjacent sets is completely 
described by the conditional belief functions linking those two 
sets. 

2. The evidence e affects hypotheses further up in the chain only 
through its impact on belief in X. 

3 .  Each set of intermediate hypotheses affects belief in hypotheses 
further along in the chain only through its relation to the set of 
hypotheses immediately following it. 

4 .  All of the conditional belief functions are based on independent 
evidence, and on evidence independent of that on which the lowest 
level belief function, BelX, is based. 

To illustrate the methodology, we consider a chain of length 2 (i.e., X-rY). 

We are given a belief function BelX over X, and, for each XEX, a conditional 

belief function Be1 over Y. Of interest are the implied beliefs for 
ylx 

hypotheses in Y. 

When belief functions are based on independent evidence, Dempster's Rule is 

the natural combination tool. In order to incorporate the link between the 

sets X and Y, we need to consider the product space XxY. Our first step is to 

extend BelX to XXY, using the minimal extension (meaning that our evidence 

about X tells us nothing directly about Y). Each focal element A of BelX is 

extended to a new focal element AxY, with the same belief BelX(A) and basic 

probability assignment mX(A), 

The second step is to embed the conditional belief functions into the product 

space. We start by creating a new belief function over XxY for each Be1 . 
y l x 

Each focal element BxcY is associated with a new focal element 

((X)XB~)U({~)XY) of the new belief function. The new focal element is as- 

signed belief Bely~,(BX) and basic probability mylx(Bx). It represents belief 

in Bx if x is the case, but no information about Y otherwise. 

Combining the new belief functions by Dempster's Rule gives the conditional 

embedding (Shafer, 1982) of the Be1 in XxY. For each choice of focal ele- 
ylx 

ments Bx of the Belylx, there is an associated focal element of. the condi- 

tional embedding, given by x~X((~)~Bx). The basic probability corresponding 

to this focal element is ,px mylx(Bx). 



Third, the conditional embedding of Be1 in YxX is combined via Dempster's 
ylx 

Rule with the extension of BelX to XxY. The focal elements of the combined 

belief function can be described as follows. For each focal element A of BelX 

and each choice of focal elements Bx of the Belylx, there is a corresponding 

focal element C - ,vA((x)xBX). Its basic probability assignment is the sum, 

over all A and Bx giving rise to the set C, of mX(A) ,PX mylx(Bx). 

The final step is to marginalize over Y. The focal elements of this new 

belief function (which we shall call Bely) have the form D- xvABx, for some 

choice of A and the B,. The basic probability assignment is given by the sum, 

over all A and Bx giving rise to D, of mx(A) ,Px mylx(B,). In other words, 

belief in focal element D of the marginal belief function Bely is given by 

It is clear that the marginal belief function Bely can now be used as input to 

the next link up the chain. We can proceed in this manner up the chain until 

a belief function over the final hypothesis space H is obtained. 

In fact, under the assumptions given above, this is the correct thing to do. 

Consider a three-stage chain, X+Y+Z. The following theorem establishes the 

equivalence of chaining up one step at a time and working in the full product 

space XxYxZ. 

Theorem: Consider the belief functions BelX, Belylx (xrX), and BelZly (yrY). 

Suppose the belief function BelXy over XxY is formed as above, by 

a. forming the minimal extension of BelX into XxY; 

b. forming the conditional embedding of Be1 into XxY; 
ylx 

c. combiningbyDempster 'sRule.  

Then the following procedures yield equivalent marginal belief functions over 

z. 



Procedure 1 (chaining up) : . , 

d. form the marginal Bely of BelXy; 

e. form the minimal extension of Bely into YxZ; 

f. form the conditional embedding of Be1 1 into YxZ; 

g. combine by Dempster's Rule to form BelyZ; 

h. form the marginal of BelyZ over Z. 

Procedure 2 (working over the product space) : 

d'. form the minimal extension of BelXy into XxYxZ; 

e'. form the conditional embedding of Be1 Z l y  into YxZ; 

f'. form the minimal extension of the conditional embedding into 
XXYXZ ; 

g'. combine by Dempster's Rule to form BelXyZ; 

h'. form the marginal of BelXyZ over Z. 

Proof: Procedure 1: As derived above (Equation (I)), the belief function 

Bely has, for each choice of A, Bx: 

Focal element D =  u Bx 
xe A 

Belief 

Now, for each choice of focal elements F of BelZly and D of Bely (which, in 
Y 

turn, was derived from some choice of A, Bx focal elements of BelX and 

Belylx), the marginal belief function BelZ (formed by combining Bely and 

Be1 Zl y ,  and marginalizing) has 

Focal element G = u F = u  u F  
ycD Y xeA yeBx Y 

(for some particular choice of A, Bx, Fy); 
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Belief 

- x 
U U F-G 

(B 11 (F 1. ( 3 )  mx(*) xIfX I X  X yey rnzly y 
xeA yeB Y 

X 

Procedure 2 :  Belief function BelXy has, for each choice of A, Bx: 

Focal element u ((x)xBx) 
xeA 

Belief mx(A) Z n myX(Bx). 
xex 

where the sum is over all choices of Bx yielding the same focal element (i.e., 

Bx for xeA does not affect the focal element). 

Extending this to XxYxZ gives 

Focal element u ( (x)xBXxZ), 
xe A 

with the same belief. The conditional embedding of BelZly has, for each 

choice of F focal elements of Be1 Y zly7 

Focal element U ((y)xFy) 
Y ~ Y  

Belief ll m (F). 
y.Y zly y 

Extending to XxYxZ gives 



Focal element 

with the same belief. Now, combining by Dempster's Rule requires intersecting 

these, to yield 

Focal element 

Belief in this focal element is the sum of the products of belief in focal 

elements that intersect to form the given focal element ( 4 ) .  The belief is 

the sum of terms of the form 

where the sum is over all choices of A,  B,, F giving rise to the focal ele- 
Y 

ment ( 4 ) .  Finally, we marginalize, to get belief function BelZ1, with 

Focal element G' = U 
xeA y ? ~xF~ 

Belief 

where again the summation is over all A, Bx, F giving rise to focal element 
Y 

G. Clearly these match the focal element ( 2 )  and belief ( 3 )  from Procedure 1, 

so the two procedures are equivalent. 

It is clear from this analysis that a single chain of evidential argument 

would be evaluated by "chaining up," one level at a time, until the final out- 

put, the implication of the evidence for the top-level hypothesis, is ob- 

tained. 

A.2 A Hierarchical Tree of Evidence 

Figure 2  is an example of the kind of evidential structure commonly found in 

problems of hierarchical inference. Given some evidence about the low-level 



events (A, D, E) and some evidence relating events to those immediately above 

them in the tree, the problem is to find the implications for the top-level 

hypothesis set H. 

Following the ideas in the previous section, we express the impact of the 

evidence on knowledge about low-level events as belief functions (BelA, BelD, 

BelE). The relation between adjacent intermediate level events is expressed 

as conditional belief functions (BelBla, BelClb, etc.). The analysis outlined 

here requires certain independence assumptions. Assumptions 1-4 must be 

satisfied within each single chain (e.g., D+F-+H). Moreover, separate argu- 

ments for a given conclusion (i.e., lines of reasoning that do not share a 

common hypothesis space except for the conclusion) are based on independent 

evidence (i.e., D+F+H and E+F+H are not independent because they share the ar- 

gument from F to H, but each is independent of A+B+C+H. Moreover, D+F and E+F 

are independent). 

The procedure for analyzing an argument such as that given in Figure 2 is as 

follows. First, chain up each argument individually until encountering a node 

shared with another line of argument. Then combine, using Dempster's Rule, 

all belief functions for a given node. Continue chaining up and combining un- 

til the top-level node is reached. 

For example, in Figure 2, we would propagate the belief function BelD through 

the chain D+F to obtain belief function BelFl over F. Then propagate BelE 

through E+F to obtain BelF2 over F. Combine by Dempster's Rule, obtaining 

BelF. Propagate through F+H to obtain BelHl over H. Now, propagate BelA 

through A+B+C+H to obtain BelH2. Combine these using Dempster's Rule to ob- 

tain the final belief function BelH. 



APPENDIX C: UNCERTAINTY IN DATABASE SYSTEMS 

In this section, we turn to aspects of currently existing database technology 

which contribute to the design of an evidential database for intelligence 

analysts. In the course of this discussion, we ask what methods exist or have 
I 

been proposed to represent incomplete or uncertain data. Although the most 

prominent database formats and query languages in use today offer little or 

nothing to assist users in representing uncertainty, nevertheless, con- 

siderable technical attention is being given to the problem, and a variety of 

apparently viable approaches have been defined. 

The situation is quite different with respect to a second question: what 

methods exist or have been proposed to represent the e v i d e n t i a l  arguments' that 

underlie such representations of uncertainty? Few researchers have addressed 

the issues of model building and structuring of evidential arguments that are 

essential to the intelligence analyst's understanding of his data. To have 

the capability of representing, storing, and retrieving numerical probabil- 

ities (or possibilities, or degrees of belief) corresponding to different 

hypotheses (e.g., about the identity of the perpetrators of a terrorist act) 

is of some use. Of far greater value, we believe, is the ability to repre- 

sent, record, and retrieve the reasons and assumptions upon which those 

assessments depend, and to manipulate such reasons and assumptions in a 

variety of ways to resolve conflict and construct a convincing evidential ar- 

gument. 

Our discussion is in two parts: (1) a brief review of the relational model of 

data and alternative ways of organizing data (network, hierarchical); and (2) 

recent efforts to modify or extend the relational system to include repre- 

sentations of uncertainty. 

C.l The Basic Relational Model 

A number of different ways of organizing large databases have been developed, 

each with its advantages for certain classes of problems and disadvantages for 

others. In theory, structure is a crucial issue, affecting design of the data 

manipulation language, including the types of inferential and uncertainty- 

related queries that can be posed. In practice, selection of a data structure 



may make implementation of a particular user operation easier or harder, but 

never makes it impossible. 

Most prominent among representation schemes at the user level are hierarchi- 

cal, network, and relational approaches. The relational approach is by far 

the best developed, and the one for which there has been the most work on 

adaptations to deal with incomplete information. In the next subsection, we 

examine modifications to the relational approach that allow representation of 

incomplete information. As a prelude, we present an overview of the rela- 

tional approach. 

In a relational system, the fundamental objects are two-dimensional tables 

known as relations. By convention, the columns correspond to the attributes, 

or dimensions along which the data are characterized; and the rows are the 

records, corresponding to the different objects or occurrences being modeled 

in the database. An attribute or set of attributes whose values uniquely 

identify the records in a relation may be used as a key. All records are as- 

sumed to be distinct; no duplicates are allowed. 

To be useful, a database must not only store information, it must permit 

access and manipulation of the information. The user communicates with the 

database management system by means of an access language. The access lan- 

guage allows the user to manipulate relations to form other relations, and to 

pose queries to the database management system. 

The chief advantage of the relational model is that the access language can be 

data independent: the language need only address the general operations on 

relations and their elements, not details of data storage. The access lan- 

guage may be defined and viewed in different ways, but a common approach is to 

construct an algebra based on five primitive operators. These five operators 

form new relations from existing relations. The first three are the usual set 

theoretic operators, union, set difference, and cartesian product. Union and 

set difference must be restricted only to relations that are union compatible, 

that is, relations having attributes which can be placed in one-to-one cor- 

respondence with each other, such that each attribute in one relation has the 

same domain as the corresponding attribute in the other relation. Cartesian 

product is unrestricted in application. The fourth operator, projection, 



forms a new relation by dropping all but a specified set of attributes, then 

removing duplicate rows. Finally, the s e l e c t i o n  operator selects all records 

for which the value of a specified logical expression has truth value T (e.g., 

select all records for which AGE takes on values between 40 and 65). Based on 

these five operators, other useful ones can be defined. A common one is join, 

which concatenates rows of one relation with rows of another, based on a logi- 

cal expression relating an attribute of each. An example of the natural  join 

operator is shown in F i g u r a  (other joins are possible, based on logical 

comparisons other than equality). 

We might think of any of these five operators as a type of query, but selec- 

tion most closely resembles the intuitive meaning of the term query. Thus, 

the kinds of queries supported by a relational database system include ques- 

tions such as, "find all records for which country of origin is France," or 

"for which individuals is the city of birth the same as the city of 

residence?" Selection followed by projection allows the following kind of 

query: "Show me the employee number, salary, and- length of service for all 

employees in the chemistry department." A final type of query results not in 

a relation (or set of records), but in a truth value (T or F). An example of 

such a "yes-no" query is, "are there any contacts who are fluent in Russian 

and live in Baltimore?" 

C.2 Incomvlete Information in the Relational Model 

Uncertainty in its various forms is ubiquitous in data taken from the real 

world. Nevertheless, until recently database theorists have devoted little 

attention to studying the representation of uncertainty in databases and the 

special requirements it imposes on structure and information access. This 

lack of attention has been reflected in database software products, which 

typically do not provide support for incomplete, ambiguous, or imprecise data. 

Within the relational model, some kinds of uncertainty are handled more easily 

than others. Most authors make the assumption that the number of attributes, 

the attributes themselves, and the attribute domains are known precisely. 

(That is, we know that there are 25 attributes, that one of the attributes is 

SALARY, and that the domain of SALARY is the set of nonnegative integers). 

Thus, the only allowable kind of missing information concerns the values of 
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attributes for particular records. Because the key field is supposed to be a 

unique identification field for a record, it is assumed that the value of the 

key is known (this restriction applies only to base relations; relations 

derived by means of operators such as projection may contain uncertain values 

in the key). Implicitly, therefore, it is also assumed that the number of ob 

jects (records) and their identify are not uncertain. 

C.2.1 Null values. Codd (1979) develops extensions of the relational algebra 

to deal with null values, where a null value (denoted by #) is taken to mean 

"value at present unknown." Given that null values are allowed to exist, the 

data access language must be extended to deal with them. Specifically, a 

means must be provided for determining the truth values of expressions con- 

taining null values, and the operators must be redefined so that they operate 

on relations containing null values. 

Codd defines a three-valued logic for determining the truth value of expres- 

sions containing nulls. The value of any logical expression may take on one 

of three values: T (true), F (false), or # (unknown). Truth tables for logi- 

cal operators, as well as rules for set inclusion, are based on the null sub- 

stitution principle. The null substitution principle states that an expres- 

sion has the value # if and only if substituting (possibly distinct) non-null 

values for each occurrence of # in the expression can result in either the 

value T or the value F. Thus, the expression #vT has the value T, because 

substituting either T or F for # yields T. On the other hand, the expression 

#AT has the value #, because substituting T yields T, but substituting F 

yields F. 

The five operators of the relational algebra are extended based on the null 

substitution principle and on an extension of the rule for removing redundant 

rows. For purposes of removing duplicate rows, a null in one row is con- 

sidered equal to a null in another (in contrast to a truth value of # for the 

expression # = #. With these rules, the extensions of union, set difference, 

cartesian product, and projection are well-specified. The select operator, 

however, depends on the truth value of a logical expression. Two extensions 

are possible, one that selects only those records for which the expression 

evaluates to T, and another that selects only those for which the expression 

does not evaluate to F. Codd resolves this indeterminacy by defining "true" 



and "maybe" versions of the select operator. (His maybe version selects only 

those records for which the expression evaluates to #; selecting non-F records 

requires performing a true select followed by a maybe select.) 

C.2.2 Lipskifs information system. In Codd's system, we either know the 

value of an attribute exactly or we know nothing about it. Frequently, 

however, an intermediate level of information is available. We now turn to 

one kind of generalization of Codd's relational algebra with null values. 

Lipski (1979) considers the case where the value of each attribute is known to 

lie within a specified subset of the attribute domain. A known value cor- 

responds to a singleton, and Coddfs null value corresponds to the entire 

domain. Lipski's system allows knowledge intermediate between these two ex- 

tremes. 

The only kind of incomplete information that can be represented in Lipskifs 

system is knowledge that a given attribute of a given record is constrained to 

lie within a subset of the attribute domain. In particular, information such 

as TAX < SALARY cannot be represented (unless, of course, one of TAX or SALARY 
is known exactly, in which case this information would be equivalent to con- 

straining the other to lie within a subset). Moreover, an attribute value 

either is possible or it is not--there is no way of representing degrees of 

possibility. 

Lipski is concerned with developing a logic for queries in a database consist- 

ing of a single relation. He is not concerned with the operators for forming 

new relations out of existing relations (except, as we shall see, for select). 

For Lipski there are two kinds of queries, corresponding, in our language, to 

the select operator (find all records satisfying a given property) and to yes- 

no queries (does the following property hold?). Intersection and union can 

also be expressed in Lipskifs language (as AND and OR, respectively). 

However, projection, division, and cartesian product cannot be expressed. 

For every object and every attribute, then, the system stores not a unique 

value, but a subset consisting of all the values which the attribute could as- 

sume for the given object. Lipski is concerned with extending the usual logi- 

cal definitions for a query language to this case of incomplete information. 



There are two natural responses to a query in an incomplete information sys- 

tem. For selection queries, the first is to list the set of objects for which 

the property is known to hold; the second is to list the set of objects for 

which the property might hold, or for which the property is not known not to 

hold. These two responses define respectively the lower and upper values of 

a selection query. For yes-no queries the lower and upper values are defined 

analogously. Codd also considers a third query response, corresponding to 

what he calls the "internal interpretation" of a query. 

Lipski defines a modal logic for dealing with queries in an incomplete infor- 

mation system. The "possible worlds" of Lipski's modal logic are the possible 

completions of the database. A completion of a database is a complete infor- 

mation system (i.e. all attribute values are definite) formed by selecting, 

for each record and each attribute, one of the set of possible values for the 

attribute. The lower value of a selection query is the set of all objects for 

which the query is satisfied in all possible completions of the database; the 

upper value is the set of records for which the query is satisfied for some 

completion of the database. 

Thus, Lipski's system allows the formulation of queries such as "list all 

sources who are known to have contacted us within the last five years," or 

"list all employees who possibly earn more than $30,000." Indeed, the 

capability for an internal interpretation of queries allows combinations such 

as, "list all contacts who are known to be fluent in Russian and who may have 

visited the Soviet Union." 

For atomic values, the internal interpretation is the same as the lower value. 

For a compound query, such as, finding all red or blue objects, there is a 

difference. The lower value would retrieve all objects whose color is known 

to lie in the set (red, blue). In the internal interpretation, the lower 

values of the atomic queries are processed as in ordinary logic. Thus, the 

result would be blue. (The name "internal interpretation" comes about because 

the response is a statement of the system's internal knowledge, rather than 

about the external world being modeled). 

Lipski's logic is not truth-functional (i.e. the truth of an expression cannot 

be determined solely from the truth values of its components). He notes a 



paradoxical element in Codd's truth-functional three-valued logic. Consider, 

for example, the expression PA-p, where the value of p is #. In Codd's logic, 

the truth value is unknown, as is the truth value of the conjunction of any 

two null-valued expressions. Nonetheless, we know that p and not-p cannot 

both be true. Thus, argues Lipski, the expression PA-q should have truth 

value # when the expressions p and q are unrelated, but when q-p, the value of 

the expression should be F. In general, Lipski recommends modifying the null 

substitution principle in the following way: when substituting for null 

values in an expression, always substitute the same value for different occur- 

rences of the same variable (distinct values may be given to distinct 

variables). 

The fact that the value of an expression cannot be determined by the truth 

values of its components presents problems for computing query responses. 

Fortunately, Lipski presents theorems by which arbitrary expressions can be 

transformed into canonical forms from which the upper and lower values of 

queries can be determined from the upper and lower values of the component ex- 

pressions. 

C.2.3 Fuzzv constraints on attribute values. Prade (1984) generalizes 

Lipski's approach using ideas from Zadeh's possibility theory. In Lipski's 

system attribute values are constrained to lie in crisp subsets of the at- 

tribute domain. That is, a given value either is or is not possible--there is 

no room for degrees of possibility. In Prade's system, although the attribute 

domains are crisp sets, attribute values are fuzzy subsets of the attribute 

domain. Thus, Prade allows for differing degrees of possibility for different 

attribute values. 

As with Lipski, Prade is concerned with a query language for a database system 

with incomplete information. Since he is concerned only with a single rela- 

tion, he does not consider the full relational algebra (i.e. cartesian product 

or join). Rather, he considers the problem of how to respond to select or 

yes-no queries when information about attribute values is fuzzy. 

Prade's fuzzy relational database consists of a single relation, with rows 

corresponding to records and columns corresponding to attributes. The value 

of attribute i for object x is a possibility distribution T i (XI which maps 



elements in the attribute domain Di into the interval [0,1]. A value of 1 for 

A~(~)(u) means that u is undoubtedly possible as a value for attribute i on 

object x; a value of zero means it is impossible; and intermediate values mean 

intermediate degrees of possibility. (Note that xi(,)(u) = 1 does not mean 

that u i s  the value; it simply means it is definitely a possible value.) If 

an attribute's value is known to lie in a crisp (i.e. ordinary) subset, then 

"i (x) is the characteristic function of that subset (equal to 1 for elements 

of the subset, and zero otherwise). Thus, Lipski's representation is a spe- 

cial case of Prade's. 

The formulation of incomplete information in terms of possibility theory al- 

lows expression of a different kind of incomplete information than "value at 

present unknown." By specifying x i(x) = 0, we may represent information of 

the form, "attribute i does not apply to object x," (since all values in the 

attribute domain have possibility zero). Prade requires that if an attribute 

applies to a given object, then there exists at least one value that is un- 

doubtedly possible (i.e. the maximum value of n 
i (XI is either 1 or 0). This 

rules out the situation where attribute i is only "partially applicable" to 

object x. 

Prade extends Lipski's results on the lower and upper values of queries to the 

case of fuzzy information. For a selection query, Lipski's upper value is the 

(crisp) set of those objects which are not excluded from having the property; 

in Prade's system, the upper value is a possibility distribution for the fuzzy 

set of responses to the query. Correspondingly, Lipski's lower value is the 

(crisp) set of those objects which are known to satisfy the query; in Prade's 

system, it is the n e c e s s i t y  d i s t r i b u t i o n  corresponding to the above-mentioned 

possibility distribution (the necessity measure is defined as 1 minus the pos- 

sibility of the complement, and takes on the value 1 if and only if the object 

must satisfy the query). 

Prade's system has several advantages over Lipski's. First, he claims that 

the min/max operators are easier to manipulate than the "possible completions" 

semantics of Lipski's modal logic. Second, Prade's system can handle more 

complex types of dependencies than can Lipski's system. Any kind of fuzzy 

relation between two or more attributes can be modeled (including the pos- 

sibility that for some values of attribute i, attribute j may be 



inapplicable). Finally, Prade's system supports a more expressive query lan- 

guage. Specifically, one may ask not just for objects whose values are known 

to be possible (a i(x) = I), but for objects whose value are at or above a 

specified level of possibility. 

Prade assumes that possibility distributions are already specified as numeri- 

cal quantities; his system manipulates these numerical possibility distribu- 

tions to compute possibility and necessity measures as query responses. Prade 

does not consider the translation of linguistic terms (e.g. "tall" man) into 

possibility distributions (e.g. a possibility distribution for the HEIGHT at- 

tribute with possibility values a(5'4") = 0; a(5'10") = .5; ~(6'3") - 1.0). 
C.2.4 A fuzzv relational al~ebra. On the surface, Buckles and Petry (1982) 

would seem to be addressing the same problem as Prade: generalization of 

Lipski's framework to incorporate fuzzy information about attribute values. 

However, the authors actually address different aspects of the incomplete in- 

formation problem. Prade generalizes Lipski to allow attribute values to be 

fuzzy (not crisp) subsets of the attribute domains. He is concerned with 

responding to selection and yes-no queries when attribute values are fuzzy 

sets. In contrast, Buckles and Petry retain Lipski's requirement that at- 

tribute values be modeled as crisp sets. They are concerned not with a query 

language, but with a relational algebra consisting of commands such as projec- 

tion, union, intersection, and join. Their use of fuzzy set theory is the in- 

troduction of a fuzzy similarity relation on the cross product of the at- 

tribute domain. The similarity relation is used for the operation of removing 

redundant tuples from the database. For purposes of removing redundant 

tuples, two attribute values are considered equivalent if their similarity 

exceeds a user-specified threshold. They require the similarity relation to 

satisfy a form of transitivity in order to ensure uniqueness in the resultant 

relation. 

Buckles and Petry state that operators are allowed to have a conditional 

clause (i.e. form the intersection of RELATION1 and RELATION2, where 

DEPARTMENT=CHEMISTRY). However, they do not consider the issue of the truth 

value of expressions containing fuzzy-set-valued attributes, and indeed, all 

their examples of conditional expressions involve attributes with known 

values. 



C.2.5 Another aDDr0ach to a fuzzy auerv lan~uage. Another approach to incor- 

porating fuzzy logic into relational database theory is developed by Zvieli, 

Zvieli criticizes Buckles and Petry because of the restriction that attribute 

values must be described by crisp subsets; like Prade, he allows fuzzy at- 

tribute values. But, unlike Prade, he considers both a relational algebra and 

a query language. 

Zvieli's relational algebra and query language are based on FFOL (fuzzy first 

order logic). FFOL incorporates "fuzzified" versions of the logical operators 

of first-order predicate calculus (Section 2 . 1  discusses how to "fuzzify" 

logical expressions). Additional operators are included, called transformer 

operators. These operators modify the possibility distribution associated 
2 with an expression (e.g. concentration, defined by pcON(A) - pA, is a pos- 

sible interpretation of the adjective "very"). Finally, FFOL contains a tran- 

sitive closure operator (the transitive closure of an expression is the con- 

junction of the expression with itself infinitely many times). 

His relational algebra consists of operators union, intersection, difference, 

cartesian product, projection, selection, join, division, and assignment; as 

well as the relational transformer operators. Zvieli proves that his rela- 

tional algebra is complete, in the sense that it can express anything express- 

ible in his relational calculus, or query language. 

Zvieli expresses fuzziness in a different way than does Prade, at the record 

level rather than at the individual attribute level. Consider, for example, a 

database with relation CONTACT-LOCATION, with fields CONTACT-ID, COUNTRY-OF- 

ORIGIN and CURRENT-RESIDENCE. In Prade's system, attribute values may be 

fuzzy sets. Thus, the COUNTRY-OF-ORIGIN of Contact-385 might be expressed by 

the possibility distribution ((France, Germany, Austria); (1, .8, .2)) (i.e. 

France is undoubtedly a possible country of origin; Austria is possible only 

at the .2 level). In contrast, Zvieli expresses fuzziness at the relation 

level, by specifying a fuzzy membership function of each object in the rela- 

tion. Looking at just the projection of the CONTACT-LOCATION relation on the 

attributes CONTACT-ID and COUNTRY-OF-ORIGIN, Zvieli would express the same in- 

formation as described in Table ZVIELI. In contrast to Prade, Zvieli would 

say that (Contact-385, Austria) belongs to the projection of CONTACT-LOCATION 

at level of possibility .2. 



Table ZVIELI: Structure of a Fuzzy Relation in Zvieli's system 

CONTACT-ID COUNTRY-OF-ORIGIN P 

France 
Germany 
Austria 

Zvieli's representation is more expressive, but at the cost of a vastly 

greater storage requirement. In large systems with a high degree of fuzzi- 

ness, his representation would quickly become unworkable. 

To see this, note that it is quite naturalin Zvieli's system to represent the 

knowledge that Contact-385 no longer lives in her country of origin. We would 

simply assign zero possibility to the tuples (Contact-385, France, France), 

(Contact-385, Germany, Germany), etc. Note that, e.g., France might still 

be a possible current residence: we might have  contact-385, Germany, 

France) - .8. In Prade's system, we can express contraints by defining a 

separate constraint relation, defined as a fuzzy subset of'the cross product 

of the attribute domains. We can thus specify that France is not a possible 

attribute for CURRENT-RESIDENCE when COUNTRY-OF-ORIGIN - France. However, 
e 

Prade discusses only constraints between two attributs. Constraints among 
A' 

three attributes would be required to represent knowledge that the above con- 

traint applied only to Contact-385. 

The cost of the greater expressiveness of Zvieli's system is that he must 

store the entire joint possibility distribution on CURRENT-RESIDENCE and 

COUNTRY-OF-ORIGIN. As the number of attributes in the relation increases, the 

storage load of Zvieli's system grows exponentially, while that of Prade's 

system grows linearly. For example, if there are ten contacts, each with 

three possible values for COUNTRY-OF-ORIGIN and CURRENT-RESIDENCE, ninety 

(10x3*3) tuples, with four fields each (three attributes and a possibility), 

must be stored (unless some tuples have zero possibility). The total storage 

would be 360 fields. Prade must store only ten tuples, although the COUNTRY- 

OF-ORIGIN and CURRENT-RESIDENCE fields of each will have three (<value>, 

<possibility>) pairs. The result is ten tuples with 1+6+6 fields each, or 130 

fields. The problem becomes more acute as the size of the tuples increases. 



Clearly, Zvielifs system is unworkable in a system of any size unless the 

amount of fuzziness is strictly controlled. Indeed, he criticizes the ap- 

proach of Buckles and Petry because merging similar tuples "increases the fuz- 

ziness of the data (we prefer to control and minimize fuzziness)." However, 

he never says how fuzziness can be "control[led] and minimize[d]." 

C.2.6 A ~eneral fuzzv relational database svstem: Representation of fuzzv 

linguistic ex~ressions. Zemankova-Leech and Kandel (1984) develop a fuzzy 

relational database system that is similar to Prade's system, but more general 

in some respects. 

Like Pradefs system, their system can represent fuzzy data, manipulate fuzzy 

logical expressions, and compute possibility and necessity measures for satis- 

faction of queries. They also derive some fuzzy relational operators based on 

fuzzy similarity and proximity relations (these correspond to operators such 

as IS, GREATER THAN, etc.). Finally, their system that can process linguistic 

expressions (e.g. "John is young."). 

Fuzzy relational operators allow derivation of properties based on their 

similarity and proximity to other properties. An example given by Zemankova- 

Leech and Kandel concerns deriving the possibility that Bob's hair is brown 

from the possibilities that it is red or blond, and the similarity of those 

colors to brown. Assume that Bob's hair is blond with possibility . 3  and red 

with possibility .7 (note that there is no possibility equal to 1; this 

reflects the fact that no color completely describes Bob's hair). If blond is 

.4 similar to brown and red is .5 similar to brown, then the possibility that 

Bob's hair is brown is given by max{ .3x.4, .7x.5 ) = .35. 

The popularity of fuzzy sets has stemmed in large part from their promise for 

representing the imprecision in natural language. Of the authors considered 

here, Zemankova-Leech and Kandel are the only ones to propose a mechanism for 

processing linguistic expressions in a fuzzy relational database. To do this, 

they require a relation that "translates" any given linguistic expression into 

a possibility distribution. For example, they give a relation YOUNG which as- 

signs a possibility to each age (e.g. 10 has possibility 1; 40 has possibility 

- 4 ) -  
C-12 



The storage requirements for such a scheme would be enormous, if the system 

were to be able to handle a large number of linguistic expressions. Moreover, 

although they do recognize that users might want to customize these 

"translation" relations, they do not consider that a single user might require 

different meanings for the same term, depending on context. Consider for ex- 

ample, the different connotations evoked by the phrases, "young business ex- 

ecutive," and "young newlyweds," or by the phrases, "aging Politburo member," 

and "aging terrorist." 

C.2.7 A statistical approach to incomplete information. An alternative ap- 

proach to incomplete information is to allow for probabilistic information 

about attribute values. Wong (1982) considers a framework within which a num- 

ber of different types of information can be represented. He considers a 

database consisting of a single relation. He presents results for two types 

of query: queries that select sets of objects and queries that extract values 

(projection is an example of the second type of query). 

Wong creates a taxonomy, classifying incomplete information databases by the 

type of incomplete information and whether there is prior information about 

attribute values. There are two types of incomplete information. In the 

first type, the observed database is a distortion of the ideal database. 

There is a known distortion function which transforms a vector of attribute 

values in the ideal database to the vector (possibly lower dimensional) of ob- 

served attribute values. Examples are when material and labor costs have been 

collapsed into total cost, or when height is required in inches, but is given 

only as tall, average, or short. In the second type of incomplete informa- 

tion, the observed attribute value is a realization of a random variable whose 

distribution depends on the true value of the attribute (and is assumed to be 

independent across objects, conditional on the true value). Note that the 

noise may be dependent within objects. Thus, if we have only last year's 

sales and last year's salaries, we may model this year's sales and salaries as 

random increments from last year's. Conditional on this year's sales, the 

values for last year's sales are assumed independent, but sales and salaries 

may be dependent. 



Wong considers two cases with respect to prior information. The first is no 

prior information. The second case is that the all vectors of attribute 

values are a priori independent and identically distributed. 

Wong's formulation allows for a rich representation within the types of incom- 

plete information it supports, but it cannot handle the full range of uncer- 

tainty modeled in Lipski's system. For example, it cannot handle the situa- 

tion where more is known about a given attribute for some objects than for 

others (e.g. SALARY is missing for Smith but not for Jones). 

For selection queries, in the no prior/known distortion function case, Wong's 

system would respond with Lipski's lower and upper values. 

For the other three cases, where probabilistic information is available, Wong 

derives statistical tests based on trading misses and false alarms. When 

there is no prior information, a likelihood ratio test is used to decide 

whether an object satisfies the criterion provided in a query. When there is 

prior information, losses for misses and for false alarms are specified. The 

minimum expected loss response to a query is to report that an object 

satisfies the query if the posterior (to observing the data) probability that 

it satisfies the query exceeds a threshold depending on the ratio of the two 

loss values. Lipski's lower (upper) value corresponds to avoiding false 

alarms (misses) at any cost. Wong's framework allows investigation of cases 

intermediate between these two. 

In selection queries, the system is to find which objects satisfy the given 

criteria, and the response may be simply an object identifier. In Wong's 

second type of query, the response will be attribute values or functions of 

attribute values. Wong suggests using the maximum likelihood estimate of the 

value when there is no prior information and the mode of the posterior dis- 

tribution when there is prior information. Wong does not discuss the issue of 

representing the range of uncertainty associated with a query. Such a repre- 

sentation would be necessary in many intelligence applications, and useful in 

most. 

In the case of selection queries with prior information, the ratio of the 

miss/false alarm loss values is directly related to the posterior probability 



that will be accepted as a positive response to the query. Thus, varying this 

ratio will allow selection with different degrees of stringency. Indeed, 

users might feel more comfortable specifying queries in the form, "select all 

individuals for which CITIZENSHIP - GREECE with probability greater than .7," 
than specifying miss/false alarm tradeoffs directly. In general, it would be 

useful for the results of a query to include both the items satisfying the 

query and their posterior probabilities. 

When there is no prior information, a similar type of sensitivity analysis can 

be performed by varying the p-value for acceptance in the likelihood ratio 

test. Indeed, if equal priors are assumed, the p-value corresponds to the 

posterior probability. 

For Wong's second type of query, again it would be useful to provide a repre- 

sentation of the uncertainty associated with an estimate. This could be ac- 

complished by providing a confidence interval about the maximum likelihood es- 

timate (in the case of no prior information), or a credible interval about the 

posterior model (in the case of prior information). 

C.2.8 Summary 

\ 

The work discussed in this section covers a very specific type of uncertainty: 

unknown values for fixed unknown objects. Prade allows an "attribute does not 

apply" designator; Zvieli allows attributes that only partially apply. None 

of the authors considers uncertainty about what are the relevant attributes. 

In general, a unique, certain key field is required, at least in base rela- 

t ions. 

The earliest work (Codd, 1979) allows null values, with meaning "attribute 

value at present unknown." A number of authors have considered generalizing 

the query language of Codd's system. Lipski (1979) extends Codd's query lan- 

guage to deal with finer gradations of information than Codd's "everything or 

nothing" framework. Specifically, he allows the case where attribute values 

are subsets of the attribute domains; within his system, singletons correspond 

to complete information, and the entire domain corresponds to Codd's null 

value. Lipski provides a mechanism for computing lower and upper responses to 

queries, corresponding to what is known and what is possible, respectively. 



These systems are general, in that the value may be unknown due to impreci- 

sion, incompleteness of evidence, or stochastic uncertainty. Nevertheless, 

they do not allow representation of degrees of uncertainty. One cannot repre- 

sent the knowledge that while several values are possible, one may be in some 

sense a better match than the others. 

In extending Codd's and Lipski's work to allow gradations of uncertainty, most 

authors have concentrated on representing imprecision, by means of fuzzy set 

theory. We have reviewed a sampling of work in this area (Prade, 1984; 

Buckles and Petry, 1982; Zvieli; Zemankova-Leech and Kandel, 1984). In 

Prade's system, attribute values are fuzzy subsets of the attribute domain. 

In addition to the queries allowed by Lipski, Prade allows the user to ask for 

those records for which a given condition holds with a certain level of pos- 

sibility. Most authors deal with manipulating the mathematical structures of 

fuzzy set theory; only Zemankova-Leech and Kandel treat the important issue of 

"translating" back and forth between linquistic expression and possibility 

distributions. This, we feel, is a key problem limiting the success of fuzzy 

set theory. Like other fuzzy set theorists, Zemankova-Leech and Kandel fail 

to provide an adequate method for accomplishing this. 

Wong has treated another aspect of uncertainty in attribute values: that of 

probabilistic uncertainty. He treats querying a database with incomplete in- 

formation as a problem in statistical estimation. His approach is ideally 

suited to the case in which uncertainty in attribute values can be viewed as 

arising from a probabilistic process generating the uncertain values. (It is 

important to emphasize that Wong's approach is not limited to cases where we 

believe attribute value actually are generated probabilistically; it applies 

when we believe the analogy fits well enough for practical purposes). Wong's 

approach allows the user to ask for objects satisfying a criterion with a 

given probability (in the case where there is prior information); it also al- 

lows an explicit tradeoff between false alarms and misses. 

Although we are not aware of any work in this area, it is clear that on exten- 

sion of Lipski's model could be developed to handle the problem of incomplete 

evidence. In such a model, attribute values would be characterized not by 

probability or possibility distributions, but by Shaferian belief functions. 



Queries would retrieve objects for which the degree of support or plausibility 

for a hypothesis was above a given level. 

While useful, the efforts discussed in this section address only part of an 

analyst's problem. The analyst requires support that goes beyond the level of 

representing and manipulating numerical measures of uncertainty, to the level 

of support in developing the numbers themselves. This entails a system which 

can help the user in structuring an evidential argument, and constructing num- 

berical'assessments of uncertainty from the reasons and assumptions on which 

they are based. The Self-Reconciling Evidential Database described in Secion 

3.0 will, we argue, provide the analyst with both the capability for repre- 

senting and manipulating uncertainty, and the support needed for assessing the 

numerical inputs for the system. 
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