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ABSTRACT

Although increasing attention is being given to the problem of representing
uncertainty in database systems, very little work has been done on sethods for
tepresenting the evidential arguments that underlie assessments of uncer-
taincy., Yet understanding and manipulating such arguments are essentlal te
the Intelligence analvst's tasks of maklng sensze out of unreliasble and incon-
sistent data and communlcating conclusions,

A eritical review of curremt approaches to modeling uncertainty suggests that
the following themes have the most bearing on the design of systems to support
Intelligence analysis: the adequate representation of alternative types of
uncercainty, especially the reliabilicy and completeness of arguments (in con-
trast to other concepts such as chance and "furziness®); the role of assusp-
tione and assumption-revielon in reazoning and conflict resolution; and the

gtructure, components, and relevant characteristics of arguments based on
evidence.

A system design is proposed, called The Self-Reconciling Evidential Database
{SED), which addresses these problems: (a) by providing a generic schema for
an evidential argument based on qualitative causal models that link conclu-
glons and evidence; (b) by permitting the analyst to investigate different
representations of the same argument through adoptlon amd revision of
assumptions; and (c) by embedding evidential arguments within a higher-level
"metareasoning" process that responds to conflict between differemt lines of

argument by tracing the assumptions involved in the conflict and recommending
revisions.
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1.0 INTRODUCTION

1.1 The Problem

In recent years, efforts to improve the quality of U.5. intelligence assess-
ments have focused less exclusively than before om the development and deploy-
ment of technical data collection methods, such as satellites and sensors.
There 1z a growing awareness that the success of intelligence activities is at
least equally dependent on the processes of interpretation and inference that
take place afrer the data have been collected, which extraet their =ig-
nificance for poliey and in many cases prompt and gulde the collection of new
data. A major goal of the work reported here is to explore ways in which sup-
port can be provided for the processes by which intelligence data are managed
and analyzed.

& pervasive aspect of those processes iz the handling of uncertainty. In a
recent report {Cohen, Schum, Freeling, and Chinnis, 19853), we began by arguing
that, "in a given analytic problem, identifying sources of uncertainty, as-
sessing the amount of uncertainty from each source, and combining uncertainty
across sources to make a finmal judgment are the most crucial, and perhaps the
most difficult, components of the snalysis." The appreopriate handling of un-
certainty plays a central role both in the analyst's ovn understanding of the
problem and in his comsunication of it te others. If suppert iz to be
provided for the anmalytical task, there iz ample reason te target such support

here.

1.2 Overview

This report is divided inte two relatively self-contained major sectlens.
Section 2.0 is a eritical and selective review of current approaches to model-
ing uncertainty. It focuses on a relatively small set of issues vhich seem to
have the most bearing on the design of systems to suppert Intelligence
analysis: i.e., the adequate representation of altermative types of uncer-
tainty, especially the reliability and coppleteness of arguments (in contrast
to other concepts such as chance and "fuzziness®); the rele of assumptions and
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assumption-revision In reasoning and conflict reselution; and the structure,
copponents, and relevant characteristics of arguments based on evidence., Sec-
tion 2.0 lays the intellectual groundwork for the conceptual design of a sys-
tem which is described in Section 3.0,

Section 3.0 introduces the Self-Reconcliling Evldential Datsbase (SED}. In es-
sence, the system has three layers: (1) qualitative causal modeling of the
relationships between evidence and conclusions; {(2) Bhafer/Dempster measures
of belief to capture uncertainty about the validicty of causally based
arguments; and (3) an iterative process of conflict resolution in which as-
sumptions pertaining to the csaussl model are reexamined, tested, and revised.
The components fit together into an interdependent whole. Thus, belief func-
tion measures are especially appropriate for assessing the validity of eviden-
tial arguments and are themselves clarified by the causal nature of the under-
lying models. At the same time, belief functions provide natural ways to rep-
rezent assumptions and to measure conflict, essential ingredients in the con-
flict resolution process.

Saection 4.0 summarizes conclusions and attempts to brimg together some of the
themes of Sections 2.0 and 3.0. Appendix A describes the algorithms utilized
by SED In detail, Appendix B provides a derivation of some relevant results
in the theory of belief functions., Finally, Appendix C critically reviews
some of the recent work by others on the representation of uncertainty im

database systems.



2.0 MODELS OF UNCERTAINRTY: THECRETICAL FOUNDATIORS FOR A
SELF-RECONCILING EVIDENTIAL DATABASE

In this section we identify and evaluate a number of theories regarding the
representation and manipulation of uncertain data. The present discussion
focuses on issues and ideas that shaped the design of the Self-Reconcliling
Evidential Datsbase,. It thus provides the histerial and intellectual context
for ideas that will be laid out more fully in Sectiom 3.0. Most of the prin-
ciple concepts of the Self-REeconciling Ewvidential Database, along with their
motivation, are here touched on and defended in the context of on-going
theoretical debate about uncertainty and reasoning. Additional discussion of

theeries of uncertainty can be found in Cohen et al, ([19B6) and Cohen et al,
(1985},

The Iﬂllnuiug ideas are most central to our discussion:

1) focusing om the meaning and reliability of arguments which link
evidence and hypothesis;

(2} increasing the precision or certainty of an argument by making ex-
plicit assumptions;

(3) resolving conflict among competing arguments by tracing and revis-
ing the assumptions that led to the confliect;

{4) providing & natural structure for representing the components of
an argument; and

[5) identifying features of each component which form the basis for
assumptions and which affect the reliability of the argument.

Vhile most of these toples have attracted attention in isclation, we know of
ne serlous attempts to integrate them within s single framework of reasoning.
Ve will argue that the affinities among the topics are deep; each of them ad-
dresses, in a different but complementary way, the problem of justifying
belief rather than merely quantifying it. And they support a process of
resolving conflict that delves into the reasons for the conflict, and attempts
to rectify them, rather than imposing {as in the Bayesian tradition) a mere
statistical aggregation. A system which combines these elements may provide a
mere pewerful and at the same time more transparent appreach te the repre-
sentation of uncertainty in intelligence databases.

2-1
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& core idea of recent theorizing in this field has been completemess of
evidence or reliability of an argument. A secondary theme of this section
concerns shortcomings of traditional probabilistic attempts to capture that
notion, This is mot to deny the utility of Bayesian probablility theory:
indeed, a Bayesian analysis might well be the basis of an argusment vhose
reliability needs to be considered,

A final theme concerns the representation of imprecise or fuzezy beliefs, and
the potential contributiem of fuzzy set theory.

2.1 Payesiasn Probability Theory

Bavesian probability theory is a strong contender for the central rele in any
system which represents and manipulates uncertainty. Its supporters date back
te work on "probabilistic infermation processing" (see Edwards, L966) and
earliey; more recent contributers have been de Dombal (1973}, in the fleld of
medical decislon making, and Sehum (L9B0) in the intelligence fileld, Our
focus In this discussion, however, will be on zome shorteomings in Bayesian
theory that bear on its use im evaluating an evidential argument.

& simple example can illustrate important features of Bavesian probabilistic
reasoning. Consider an uncertain hypothesis, &.g., that "Country X has built
a nuclear device.® We call this hypothesis H. Under Bayesian theory, uncer-
tainty about H would be represented by assigning a number between 0 and 1.
This number, Pr({H), reflects one’'s degree of belief about H: PFr{H)=.9 means
we are fairly sure of H; Fr(H)=.l1 means H Is unlikely.

The essence of Bayeslan inference 1s the representation of a probability of
interest, e.g., Pr{H), in terms of the probabllities of other hypotheses which
are easler to assess. Thus, Pr{H) can be computed from these other probabll-
ities rather than directly assessed. There are a varlety of ways to express a
given probabllity Iin terms of other probabilities, but the most familiar in
Bayvesian theory is "updating"” by means of Baves®' Theorem. In the above ex-
ample, suppose wWe obtain some evidence about H, e.g., a report from Agent Z
that materials from a nuclear reactor in country X have been diverted by the
government. Let us call this evidence D. The implications of datum D for the
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relative likelihood of H and its complement, H (net H), are given by applica-
tion of Bayes' Theorem (here shown in odds-likeliheod form):

Er(HID] _ PxiD|H]l PErlHl
Pr[H|D] PriD|H] ~ Pr[H]

The first ratio to the right of the "=" is the "likelihood ratio", and
reflects the ippact of D on the probabllity of H; the second ratio iz the
*prior odds" of H, before observing . For exampla, if our initial belief is
that H and not-H are equally likely (Pr(H)} = Pr(H) = .5), then cur prior odds
equal 1. If we judge that D is E times as likely if H is true than if not-H
is true, then our likelihood ratio is 8. Hultiplying & by 1 glves a posterior
odds of B, which implies a posterior probability Pr({H|D) of B8/(B+1} = .89,

Bayesian updating can be extended im & number of ways. First, the mumber of
hypotheses can be increased to encompass any mutually exclusive set. For ex-
ample, we might choose to discriminate further among the cases in which H is
not true; e.g., we might consider three possibilities: H;, that country X hass
built a nuclear device; Hs, country X will have the capability of building a
device within 5 years; Hy, country X will net have the capability within 5
years. Second, the impact of additional evidence can be quantified, and the
probability of the hypothesis further updated, For example, suppose agent W
reports overhearing conversations in which scientists from country X discussed
the technical difficulty of building a nuclear device. Thirdly, Bayes'
Theorem can be appliasd in cases where the impact of evidence om the hypotheses
of interest is mediated by other hypotheses {Pearl, 19B6; Barclay et al.,
1577; Petersen et al., 1976; Schum, 19B0)., For example, our first item of
evidence, Agent Z's report of diversion of nuclear material, bears on H in-
directly, vig the intermediate hypothesis that nuclear material was in fact
diverted, i.e., that Agent Z Iz honest and accurate. Fourth, hierarchical im-
ference structures cam be built which are able to accommodate a mumber of ways
that different items of evidence can be related to ome another with respect to
hypotheses (Schum and Martin, 1980): e.g., they may be contradictory
{reporting and denying the same intermediate event), corrocboratively redundant
{reporting the same intermediate event), cumulatively redundant (reporting
different events which reduce one another’'s evidential impact on the ultimate
hypotheses), or non-redundant (reporting different events which enhance or do

net change one another's evidential impact). In other, more complex cases of
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interdependence, Bayesian technigques capture the evidential impact of biases
or "noise” In an information source or other element in the netwerk, or nen-
independence of information source reliability with respect to what {s being
observed,

Fot surprisingly, applicatlons of Baveslan probabilicy theory te real in-
ference problems ave typleally gquite complex. In all but the most trivial
cases, a proper Bayeslan analysis reguires the assessment of & great many con-
ditienal probsbilities. Meoreocwver, the relations between them are difficult to
orgenize, and the coheremce of the total set of assessments is often difficult
to determine. Although simplifying assumptions can reduce the assessment bur-
den, the judgments of whether such assumptions are juscified may themselves be
gquite subtle. Typically, model-building 1s am !:n-gm:i.hfﬁvt process, In which
simplifying assumptions are made, conclusions are derived and checked for
plausibility, ) ﬁ,j:um?m gt .

A more serious problem concerns the unnaturalness of some of the assessments
that are required In a Bayesian analysis, In the example sbove, judgments are
required regarding the probability of observing & plece of evidence, D, given
the hypotheses, H and H; such judgments must be made in a counterfactusl frams
¢f mind, as Iif the datum D had not yet in fact been cbserved. Further, for
most types of evidence, this probability is extremely small; and judgments,
even of likelihood raties, are likely to be gquite unrellable.

An alternative way of representing Pr(H) in terms of other probabilicies,
which avoids these problems, involves the "law of total probability":

Pr(H) = Pr(A)Pr(H|A) + Pr(A)Pr(H|A).
S

Here, H is once again a hypothesis of interest (e.g., "Country X has built a
nuclear device"), and & is some conditioning event whose truth or falsity af-
fects the probability of H, e.g., & = "Country X has diverted muclear
material®; A = "Country X has not diverted nuclear material.” In other words,
the probability of H equals the probabllity of A times the probability of H
given that A occcurs plus the probability of not-A times the probability of H
glven that pnot-A cceurs, While In some cases these assessments may be more

natural, this foerm of analysis offers no simple measure, llke the likeliheoeod
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ratio, for assessing the separate impact of each new item of evidence {(e.g.,
the impact of Agent Z's report om Pri{H)).

Axiomatic derivations of Bayesian probability theory from certain desirable
properties of bellefs (e.g., deFinecel, 1%37/71964) have glven the theory a
pre-eminent clalm to validity among current approaches to handling uncer-
tainty, For example, it can be shown that unless one’'s bellefs obey the prob-
ability axioms, one may be subject to a “Dutch book," i.e., & gamble in which
one loses regardless of the outcome of an uncertain state of affairs. Such
depmonstrations, however, do not conclusively rule ocut alternative formula-
tions, First, they invariably make technical assumptions that are not com-
pelling (e.g., that belief 1ls measured by a single number rather than an
intervel). GSecondly, such foundational arguments de not establish that
Bayesian theory is uniquely fustified, since other theories may possess
desirable properties that Bayesian probability theory lacks. We shall con-
sider one such property, the ability to represent ignorance, later in this

section.

The thrust of Bayesian analysis is te improve, rather than replicate, ordinary
thinking. Bayesians argue that if one's ordinary intuitions are probabil-
istiecally incoherent, they ought to be changed. In other words, the
plausibilicy of the axioms should cutweigh the Initlal plausibilicy of an in-
coherent set of judgments, The problem here, though, iz tweo-fold: (1) al-
though the theory demands coherence, it provides no guidance as to which judg-
ments of an incoherent set ghould be changed; and (2} it iz not clear why the
plausibility of a highly abstract and technical zet of axiome should always
ocutweligh probabilistic judgment about concrete states of affairs,

It iz sometimes implied that a Bayeslan analysis is simply a matter of select-
ing a model, elieciting the required inputs, and calculating the answer. On
the contrary, we argue that applying the theory is inevitably an iterative,
bootstrapping operation. We use the theory, as if it were true, to perform an
analysis, and then test the results for consistency with our direct judgment
or with the resulta of other analyses, If we find incomsistency, we may
choose to revise our direct judgment, or to revise the values in one or more
analyses to make them consistent. In other words, we construct a probability

model for our beliefs rather thanm elicit or confirm a pre-existing ome.
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Horeover, we would argue, implausible results might in some cases persuade us

to adopt a nmon-Bayesian approach to an imference problem.

Bayesian theory is designed to capture the concept of chance, or uncertsinty
about facts. Bayesian theory fails to deal adequately with a quite different
type of uncertainty: i.e., the amount snd relisbilicty of the knowledge under-
lying an analysis, In our exasple above, we began with Pr{H) = Prinoe-H) =
.3, reflecting simple ignorance prior to the consideration of evidence, But
it might happen that after careful integration of a large guantity of
(eonflicting) information, the probabilicy of H returns te .5. The single
numbar .3, therefore, does not indicate the degree to which knowledge has been
brought to bear on the problem. Similarly, in a Bayesian analysis, a quite
high probability might be arrived at based on only a very Llimited sampling of
data (e.g., Pr(H) = .E% after consideratiom of datum D). A high probability,
therefore, means that the available evidence favors H over mot-H; it tells us
nothing about how complete or reliable the availsble evidence is. FProbabil-
ities, therefore, whether high or low, tell us nothing about the gquality or
goodness of the analysis, in the usual sense of those words.

One result of the failure to represent the amount or type of knowledpe under-
lving a probabilistic assessment iz the inability, in Bayesian theory, to
proevide puldance as to which preobabilistie beliefz to revise in recomeiling
alternative, conflicting assessmpents (e.g., the result of using Bayes' Theorem
may differ from an analysis based on the Law of Total Probability, and both
may differ from direct judgment). According to Bayesiam theory, all such
analyses are based om all the available evidence; hence, they cammot be

evaluated in terms of the amount of knowledge they successfully capture.

A second result of this failure is a theoretical incoherence in the notion of
prior probabilities. Prior probabilities are assessed as if the data under
consideration had not been cbtained, and are then updated by means of the rule
{Bayes' Theorem) discussed above. Prior probabilities are often taken te rep-
resent complete ignorance about the hypotheses in question. The most common
device for handling such ignorance is to assign equal probabilitiez to all the
hypotheses (e.g., Pr(H) = Pr(H) = .5). Unfortunately, there is always more
then one way to assign "equal" probabilities, viz., by rescaling a continuous

variasble or regrouping discrete hypotheses. Recall in our example that not-H
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can be broken down inte HE (Country X will have the capability in 5 wears) and
H3 (it will not). Thus we can argue by ignorance that F(H) = P{Hz} = P{Ha} -
1/3. Yet our previous argument, alsoc based on ignorance, concluded that

F{H) = .5. "Informationless priors" are thus not unique, and the choice of a
particular representation of the hypothesis set can significantly affect the

outcome of a Bavesian analysis.

& superficially persuasive reply is to reject the idea of assigning vacuous
"ggqual® prier probabilicies, on the grounds that we are never totally ignorant
as leng as the hypotheses are meaningful , and that priors, therefore, should
always reflect some knowledge, There are two problems with this reply. (1)
Let us grant that priors for meaningful hypotheses must reflect at least some
knowledge of the language and of the problem area. In other worda, if we &re
concerned about a hypothesis H and we understand H, then our prier probabilicy
for H must be implicitly conditioned on a body of knowledge K: i.e., PriH|EK).
It does not folleow that K reflects knowledge bearing on the truch of the
hypothesis, Yet only the latter kind of knowledge eliminates the arbitrari-
ness of agsessing prior probabilities. (2} Revertheless, let us grant for the
moment that we always have some knowledge bearimg on the truth of the
hypothesis, Ewven so, the conclusion (that pricrs gslways reflect =some of this
kind of knowledge) does not follow. An "informationless prier" can be ex-
tracted from & prier that embodies knowledge by decompesing that prier inte
elements that do embedy relevant knowledge and elements which do net. Im
other words, it should somecimes be possible, at least in primciple, te divide
E into a set Ky of bellefs that we judge does not bear on the truth of H but
which iz sufficient to make H meaningful (e.g., such if not all of our
knowledge of the English lanpguage} and a set of bellefs Rﬂ that (in conjunec-
tion with Kl} wa judge does bear on the truth of H. Then we can (in
principle) treat Eﬂ as evidence in a Bayeszian updating scheme. In that case,
wa gat PI{HIKliKilnEt{H[KI]Pr{Kﬂ|H,E1}. PI{H|K1} must be regarded as &an
"informationless prior” since K, is sufficient to remder H meaningful, but has
no impact on our beliefs about the truth of H. Assessment of Pr(H|K,) thus
cannot escape the difficulties discussed above regarding arbitrariness and

non-unigqueansss .

The upshot of this argument is not that "informationless priors" must ever be
assessed In practice, We can, after all, simply decline to decompose Pri{H|K)
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the way just described, The argument polints, rather, to a more fundamental
theoretical difficulty: that Bayeslam theory implies the intelligibilicy of
certaln judgements which are im fact arbitrary and mom-unique. This finding
weskens the mormative basis of the theory.

in interesting recent defense of Bayesian priors is provided by Chesseman
(1965), who argues that while an understanding of the problem may not yield
information bearing on the truth of hypotheses, it typleally vields invariance
requirements on the answer, and these imply a definite parclclon (L.e., group-
ing or scaling) of the hypotheses. In the absence of further Information,
equal priors should then be assessed for that partition, Cheeseman appears to
recommend an attitude toward prior prebabilitiea that regards them not as
beliefs, but as assumptions, subject to revision when new information
{implying nev invariance requirements) dictates a different partitioning. For
example, if we are asked to give the probability of finding a ship within a
particular square mile in the Atlantic, invariance (with respect to transla-
tiens, retations, transformations of scale?) requires asszigning equal prob-
ability te egqual areas, "Since the Atlantic iz roughly diamond shaped, this
means that the probability of finding the ship at an equatorial latitude is
higher than at a polar latitude," Imagine that we now acquire information
that the zhip has besn instructed te move to a particular latitude, but
"interference scrambles our reception of which latitude. Then after the ship
has had time to move, our knowledge is represented by assigning uniform prob-
ability to each latitude.™ HNote that neither the original problem formulation
nor the subsequent information (about instructions to the ship) tells us any-
thing that bears directly on the truth of where the ship 1is.

While this approach is ingenious, it raises some questions:

. The justification for equal priors ("maximum entropy™) is that
they provide a "neutral background agaimst which any systematic
(non-random}) patterns can be observed.” But this formulatiom
depends on & metaphor of physiecal equilibrium which has dubious
applicability to belief revision in gemeral. Thus, assigonment of
equal probsbilities remains wmjustified.

. Separate items of evidence bearing on the actual location of the
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ship may be obtained, some of which are couched Iin terms of area
and some of which are couched in terms of latitude. HNo =zingle
partition can serve as a "neutral background" for both types of
evidence,

™ Are ilrvariance requirements always clear? Do they always uniquely
determine a partitien? If the answer to these questions l= yes
(which we doubt}, then it seems wrong to suppose that new Informa-
tion {e.g., about the ship's instructions} will always supplant
the reguirements implied by the original problem formulation. It
appears, rather, that in some cases two or more sets of require-

ments will be imposed, which canmot simultanecusly be satisfied.

- If the answer to the two gquestions above is no, then in some cases
at least, partitions are not unigquely determined and assessment of
prior probabilities is arbicrary and non-unigque. The theoretical
difficulty for Bavesian Theory remains as long as there is only
one such example.

Bayvesian thecry provides a clear behavioral interpretation of probabilities in
terms of preferences among bets. Such behavieral Implications are cften miss-
ing In theories that incorporate more satisfactory representatfions of

ignorance; L.e,, ip those theories the avallable evidence may be ingufficlent

to diseriminate among the options., We return to this tople at the end of Sec-
tlom 2.2,

In summary, Baveslan theory possesses a unlquely compelling loglecal feundation
in application to the concept of chance and a strong link to decision making,.
However, it prewvides no guldance Iin terms of relisbility of knowledge for
choosing among alternative coherent analvses, iz not well suited for dealing
with incompletensss of evidence, and seems to imply the intelligibility of
judgments about prior prebabilities which in fact appear to be arbitrary and

non-unigue .,

2.2 Belief neE

In the theory of belief functions intreduced by Shafer (1976), Bayesian prob-
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abilities are replaced by a concept of evidential support. The contrast, ac-
cording to Shafer (1%8l; Shafer and Tversky, 1983) is between the chance that
a hypothesis 1s true, on the one hand, and the chance that the evidence means
{or proves) that the hypothesis 1s true, on the other. Thus, we shifc focus
from truth of a hypothesis (in Bayeslan Theory) to the evaluation of an
evidential argument (in Shafer’s Theory). By stressing the link between
evidence and hypothesis, Shafer’'s system (a) is able to provide an explicit
measure of quality of evidence or ignorance (i.e., the chance that the
evidence is not linked to the hypothesis by a valid argument); (b) is lesas
prome to require a degree of definiteness im imputs that exceeds the knowledge
ef the expert, and (c) permits segmentation of reasoning inte analyses that
depend on independent bodies of evidence. We will find that each of these
propecties can contribute significantly to the representation of uncertainty
in intelligence analysis,

In Shafer’'s system, the support for a hypothesis and for itz complement needﬁrw
not add te unlty. For example, {f a witness with poor evesight reports the
presence of an enemy antlalrcrafc installation at a specifie locatlon, there

iz a certain probability that his eyesight was adequate on the relevant occca-
gion and a certain probability that it was net;, hence, that the evidence is
irrelevant. 1In the first case, the evidence proves the artillery is there.

In neither case could the evidence prove the artillery is not there.

Te the extent that the sum of suppert for a hypothesis and its complement
falls short of unity, there is "uncommitted" support, i.e., the argument based
on the present evidence is unreliable. Evidential support for a hypothesis is
a lower bound on the probability of its being true, since the hypothesis could
be true even though our evidence fails to demonstrate ft. The upper bound is
glven by supposing that all present evidence that is consisfent with the truth
of the hypothesls were In faet to prove it, The interval between lower and
upper bounds, 1.e,, the range of permissible belief, thus reflects the un-
reliability of current arguments, This concept Is closely related to com-
pleteness of evidence, since the more unreliable a given asrpument is;, the more
changeable the resulting beliefs are as new evidence (with associated
arguments) is discovered., These concepts are not directly captured by
Bayeslan probabilities.



In Shafer's caleulus, suppert mi+) iz allecated not te hypotheses, but to sets
of hypotheses. As with probabilicy, however, the total support across these
gubsets will sum to 1, and each support mi-} will be between 0 and 1, It 1=
natursl, then, to say that m{-} gives the probablility that what the evidence
means 1s that the truth lies somewhere in the indicated subset.

Suppose, for example, that we have three hypotheses of intereat: Hy (Country
X has built nuclear device), Hy (Country X will have the capability within 5
years), and Hy (Country X will not have the capability im 5 years). If we are
ignorant regarding these hypotheses, we simply assign full support to the
unlversal set, l.e., m([H;, Hy, Hql) = 1; in ether werds, our available
evidence tells us only that semething is true, but not what. In a Bayesian
analysis, arbitrary decisions would have te be made about allocating probabil-
ity within this set, requiring judgments that are unsupported by the evidence.

On the other hand, the evidence may be partly but not wholly imprecise. For
example, Agent W's report of a pessimistic technical discussion among scien-
tists in Country X may mean that building a nuclear device is at least five
years away (Hy); alternatively, it might only mean that Country X has not yet
built a device (i.e., {(Hs or Hql); finally (if Agent W is unreliable or if
these scientists are not in the know), this evidence could mean nothing at all
(i.e., {H, or Hy or Hql). We can now assess the chance of each possibility:
e. g, B{Hy) = .3; m{{Hy or Hy}) = .2; m{{H{ er Hy or Hgl) = .3.

This same device, of allocating support te subsets of hypotheses, enables us
to represent the rellabilicy of probability assessments., Suppose, for ex-
ample, that a certain type of seismograph reading has been associated with
natural selsmic activicy 70% of the time and with nuclear tests 30% of the
time based on past frequency data, If we are confident that selsmic data now
being analyzed are representative of this set, we may have m{earthquake) = .7
and m{nuclear test) = .3, But if there is reason to doubt the relevance of
the frequency data to the present problem (e.g., because the frequency data
come from U.5. tests and the seismic data from other geclogical regloms), we
may discount this support function by allocating same percentage of support to
the universal set. For example, with a discount rate of 30%, we get
m{earthquakes) = .49, m{muclear test) = .21, and m{{earthquake, nuclear test])
= .30, The latter reflects the chance that the frequency data are irrelevant,
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Shafer’s belief function Bel(+) susmarizes the implications of the (") for a
given subset of hypotheses, Bel(A) iz defined as the total support for all
subsets of hypotheses contained within A; in ether words, Bel{A) iz the prob-
ability that the evidence Implies that the truth is in A. The plausibility
function P1(*) is the tetal support for all subsets which overlap with a given
subset, Thus, PL{A) equals 1-Bel(A); i.e., the proebability that the evidence

dees not imply the truth to be in nmot-A, In the exsmple above (about Agent
W), we get:

E-HII:H]]' - IIJ.{H]} - -31

Pl{l‘[a} - 1-3!1{“11 ar HEI} = 1

Bel((Hy or Hy)) = m(H3) + m{{Hy ex Hq)) = .5;

Pl([HE oL Hj}} - l-Belf{Hllj =1,

Thus far, we have focused on the representation of uncertainty inm Shafer's
system, For it to be & useful calculus, we need a procedurs for inferring de-
grees of belief im hypotheses in the light of more than one piece of evidence.
This is accomplished in Shafer’s theory by Dempster’'s rule. The essential in-
tultion is simply that the "meaning™ of the combination of two pleces of
evidence is the intersection, or common element, of the two subsets constitut-
ing thelr separate meanings. For example, If evidence Ey proves (Hy or Hs),
and evidence EE Proves [HE or H3}= then the comblnation El + EE proves HE'
Since the the meanings of the two pleces of evidence are assumed to be inde-
pendent, the probability of any given combination of meanings is the product
of thelr separate probabilities.

Let X be a set of hypotheses Hy, H;,... ,H,, and write 2% for the pover set of
X, that is, the set of all subsets of X. Thus, a member of 2% will be a sub-
set of hypotheses, such as {Hs, Hg, Hyl, Hq, or {Hy, Hy, Hy, Hgl, ete. Let A
refer to any subset in 7% Then if mq{A) Ls the suppert given te A by one
plece of evidence, and m,(A) is the suppert glven by a second plece of
evidence, Dempster’s rule is that the support that should be given to A by the
two pleces of evidence is:
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The numerator hera is the sum of the products of support for all pairs of sub-
sets A,, A, whose intersection is precisely A. The denominator is a nermaliz-
ing factor which ensures that my,(") sums te 1, by eliminating support for im-
possible combinations.

The following table illustrates the application of Dempster's Rule for combin-
ing two sources of evidemce: Agemt Z's report of diversion of material,

mq{-}, and Agent W's report of a pessimistic technical discussion, ms;(-).

my () my () m () myg(:)
Hy .9 o (.9)(.5) = .45 .82
Hqy 0 0 0 0
Hy 0 3 (.13(.3) = .03 .05
H]_HE Q ] 4] 1]
HqHy 0 0 0 0
HoHs 0 2 (.1)(.2) = .02 0
H1H2H.3 .l 5 '[,-1.:"':-5} - .UE rﬂ?
Hull set G933 +
(.9)(.2) = 45

where m‘lﬂ{-} represents comblned bellief prlor te mormalizatcion,

In our discusslon eof Bayesian theory (Sectien 2.1}, we noted that a varlety of
probabilistic structures were avallable {(a) to represent the propagatien of
uncertainty In a chaln of events from data to hypotheses, and (b) to capture
various types of non-Iindependence among Ltems of evidence and hypotheses. By
contrast, the application of Dempster’s Rule to belief functioms appears (a)
to apply only to the combipation of evidence bearing on the same hypotheses,
and (b} to demand that the evidence be independent. A more complete under-
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standing of the Shafer/Dempster framework, however, reveals that both of these

appearances are misleading.

Dempster’s Bule can be used not only to combine evidence, but alse to
propagate uncertalinty across chains of events (Laskey and Cohen, 1986; Shafer,
1982). Suppose, for example, that A is a conditioning event whose truth eor
falsity affects the probability of a hypothesis H; e.g., H = "Country X has
bullt a nuclear dewvice"; Agent Z has reported diversion of nuclear material by
Country X; A = "Huclear material has been diverted®; A = "Nuclear material has
not been diverted" (cf., Section 2.1 above). To see how Dempeter’s Bule could
apply to propagation, let us suppose we have a belief functiom over (A, A},
and two conditional belief functions over (H, H), one conditional on A and the
other conditional om L., We are interested inm the implications of these
beliefs for Country X's bullding a nuclear device: what iz the implled uncon-
ditional belief function owver (H, H}? We begin by extending each of these
three belief functions to the space (4, &) = [(H, H}. For example, support for
A tells us nothing sbout H versus H; so we tramslate my(4) as my(& x [H, HIY.
Support for H conditional om A, my(H|A), indicates & link between H and A, but
says nothing about H versus H if & is true or about A versus 4; 50 we repre-
sent it as mo((H ® A) v ((H, H) x A)). Assuming independence of the evidence
used to assess them, the three extended belief functions are then combined by
Dempster’s Bule. Fipally, the combined belief functiom over the product space
glves rise to a marginal belief function over (H, HI; .IEIAHEEEEJLE obtained
sigply by summing the support for subsets contained in H. Details on the ap-
plication of Dempster’s Rule for propagation can be found in Appendix B.

These same procedures can be applied to chains of events of any length

and may also be used to represent interdependencies among evidence and
hypothezses of any degree of complexity. For example, suppose we have an addi-
tlonal item of evidence bearing on H: Agent W has reported discussions of
nuclear devices among senior sclentists in Country X. Let B = "Agent W i=

honest”; B = "Agent W is not honest." The truth of H now depends on both A
and B:
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Assume independence of the evidence for belief functions on (A, A}, on (B, B},
and on (H, H) conditional on A, A, B and B. Then we can derive two marginal
belief functions on (H, H) by ucilizing the method in the previous paragraph
for (A, A} and (B, B) separately; we then combine the results by Dempster’s
Rule. PBut what if our assessment of A (which involves Z's honesty) is not in-
dependent of our assessment of B, W's honesty, e.g., Agents £ and W are busi-
ness associates? In that case we must assess belief in the product space (A,
I] ® B, E]. then assezs bhelief in (H, H} copditioned on the four combinations
of (A, A) and (B, B), before applying the method cutlined in the previous
paragraph.

In an importent sense, belief functions can be shown to handle all the inter-
dependencies among events and evidence to which Bayesian Theory has been ap-
plied {e.g., Schum, 1%9B80). Dempster's Bule requires independence of the
evidence underlying the belief functions that are combined; it does not
require independence of the events or claims represented explicitly wichin the
belief functions. Dependent items of evidence can be dealt with, then, by
making questions about the reliability of evidence explicit, to be dealt with
as conditioning events or intermediate hypotheses.

One of the main difficulties stending in the way of a Bayesian analysis is its
copplexity. At first sight Shafer’'s approach seems simppler, since complicated
independence judgments and conditional probability assessments appear not to
be required. This appearance is illusery. First, as just shown, conditional
non-independence can be represented in a belief funetion analysis., Secondly,
support functions must be assessed over not just the hypothesis set, but over
the power set of the hypothesis set. With 10 hypotheses, for example, the
support distribution has 1,023 elements. In principle, then, the number of
assessments required by a Shaferian model is likely to exceed the number
required by a comparable Bayesian model.

A Shaferian response to this, in parallel with the Bayesian response, is that
specialized models may be developed that require far fewer assessments (such
as consonant belief fumctions, im which sll support goes to a nested series of
hypotheses). Here again, however, (as in the Bayesian case) rather subtle
judgments must be made to determine that a particular specialized model is ap-

plicable before sawvings In quantlty of assessments can be realized. Moreover,
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combining via Dempster’'s BRule does not preserve consonance; slmilarly, complex

hierarchical models may become gquite barogue.

Shafer's theory offers a mild advantage over Baveslan theory, howewver, In the
ease of organizing judgments inte modular arguments. Belief functions are
assessed separately for independent bodies of evidence, thus providing a
measure of belief in the hypotheses based on each separate argument.

In Bayesian theory, by contrast, there is no modular way to represent

degree of belief based on different subsets of the evidence. Likelihood
ratics for independent evidence represent the impact of an argument on belief,
but do not represent degree of bellief ltself until prior probabilities are
factored In. As a result, the same priors must be included in each argument

bearing on the zame hypotheses, thug compromizing the modularity of the repre-
sentation,

Theories of bellef like Shafer’s, which provide Intervals rather than single
measures of support, may fall te uniquely determine a best declision, For each
option, an upper and a lower expected utility may be computed. If the lower
utility of option A is higher tham the upper utility of option B, then A is
preferred; but if the intervals overlap, the evidence fails to discriminate
between the two alternatives.

The cccazlonal failure of belief functlons te yleld non-asbigucus prescerip-
tions for actien iz, from the Bayeszlan point of view, a drawback, Within a
framework that acknowledges the cencept of Ignorance, however, it may be
regarded a8 & virtue. If the available evidence (plus preferences) does not
uniquely determine a decision, we want to know this, rather than sweep it un-
der the rug. Under circumstances of ignorance, the traditional Bayesian sys-
tem requires the analyst to make arbitrary judgments to £ill in the gaps.
Such judgmentz are then treated exactly asz If they were determined by the
evidence. The belief funetion framewerk, by contrast, ensbles ws to see how
far the evidence itself takes us toward a decision, and how much of the work
must be done by seme other, non-evidential process., In fact, two such
processes are available which, in conjunction with the evidence, will uniquely
determine an actien in any belief function analwysis: (1) Adeption of &
"decision attitude" for selecting a single point within the ucility interwval,

&.g., best case, worst case, or a weighted average: (2) Harvowing the inter-

2-16



vals by introducing additienal substantive assumptions. Shafer himself has
investigated a variant of (1) (Shafer, 1976); the system to be described in
Section 3.0 provides a mechanism for (2).

It would be appealing to regard Shafer's theory as simply a special-case
Bayesian model, in which prebabilities are assessed over the meaning of the
evidence rather than over the truth of hypotheses. In that case, inference by
Dempster’s Rule would share the axiomatic derivation from formally desirable
properties of belief that is a major feature of Bayesian theory. 5Such a
derivation, is, however, unsuccessful.

The basie support assigrment ml{Hj represents the “chance" that evidence ecol-
lection 1 means that H is true. This chance cannot be interpreted as &
Bayesian probability, however, because it is to be assessed as if the content
of evidence collection 1 were unknown. In other words, there are two phases
(at least in a conceptual sense) in the assessment process (see Shafer, 1985):
First, we assess the general reliability of the source of this evidence, &.g.,
the accuracy and hnn;sty of a withess or sensor, the general validicy of the
experimental method, type of argument, or analysis being employed. Only then,
secondarily, do we take Intoe account the contemt of the evidence, e.g., what
the source sald on this occaslen, the result of the experiment, the conclusion
of this argument or analysis. In the first phase, one is considering the
capabilities of the relevant evidential process in general to establish a link
between evidence (whatever it turns out to be) and hypotheses. In our ex-
ample, the chance that a report from Agent W about the tone of a discussion
ameng sclentists in Country X could discriminate H, and Hg from both Hy and
one another, is assessed as .3; the chance that such a report could dis-
criminate Hyg or Hy from Hl but not from one ancther iz .2; the chance that it
could make no discriminations at all among (Hy, Hy, Hy) is .5. In the second
phase, we use our knowledge of the contemt of the evidence (i.e., the tome of
the discussion was pessimistic) to map these chances onto possible meanings of
the evidence (e.g., we assign support of .3 to Hy; we assign support of .2 to
[Hy, Hyl}; and suppert of .5 teo {Hy, Hy, Hql).

The upshot of this restriction is that in a Shaferian analysis, we cannot use
the content of the evidence (Phase 2} im our assessment of the reliasbility of

the evidential process (Ph&se 1). Thus we cannot reassess the relisbility of
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an evidential argument based on {ts agreement or conflict with other lines of
argument or with our independent judgment of the plausibilicy of its conclu-

sion, Modularity thus comes at a certain cost.

While a Bavesian analysis can, in primciple;, sccommodste such considerations,
it would require a very large set of conditional assessments, linking all com-
ponents of one evidential argument with all components of every other argument
that has the potential for corroborating or disconfirming it., Indeed, such
considerations could alse be incorporated into a belief function analysis, if
we treat the reliability of a source with respect to a particular type of
evidentisl content as an explicit conditioning event or intermediate
hypothesis. (Such an approsach, of course, pushes back the constraint sgainst
using the content of the evidence, to the assessment of reliability of the
evidential processes underlying our explicit reasoning about reliability.)

Few Bavesian (or Shaferian) analyses in fact attempt such completeness. Seen
in this light, the gain in naturalness, modularicy, and expressive power in
the belief function approach may offset the largely pro forma loss in
validity.

How then should conflict or corrcboration amomg different limes of reasoning
be handled? Seldom, if ever, do human reasoners laboriously spell out all
possible combinations of conflict and corroboration--as required by a Bavesian
approach. Human reasoners typlecally use conflict among witnesses, sensors, or
arguments as a symptom of the existence of problems in one or more of the
relevant evidential processes and as a proapt for corrective action, such as
re-exanining the credibilitcy of sources, reconsidering basic assumptlons of
the amalysis, or searching for new informatiom. Typically, an iterative con-
flict resolution process is adopted, in which an argument or set of arguments
is constructed, conflict prompts revisions in beliefs, the revised arguments
are again checked for consistency, and the process repeats until a satisfac-
tory result is achieved.

In this light, the theory of belief functioms contains the seeds of several

useful toels for the resclution of conflict:

({1ly  Diagnosis of conflict. To the extent that two arguments suppert
incompatible hypotheses, the application of Dempster's Rule
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results in allocation of support to the mull set (support for non-
null sets is then increased, via the normalizing constant, so that
total support to non-null sets sums to unity). This null set sup-
port (equal to 1 minus the normalizing constant) provides a
natural measure of the degree of conflict In the evidence. HNo
equally natural measure iz avallable in Bayesian Theory. ({(e.g.,
Splegehalter and Knill-Jones, 1984},

{2} Assumpticons. To the degree that current evidence is uncommitted
in regard te the truth or falsity of a hypothesis, there is room
for assumptions. An assumption, therefore, could be naturally
represented in Shafer’s framework as a decision regarding the al-
location of uncommitted belief. BSuch a decision, by definicion,
goes beyond the evidence, but remains within the constraints of
the evidemce, There is no comparable concept In Bayeslan theory.

(3} Discrediting arguments. The outcome of a process of conflict
resolution is typically the discrediting of one or more lines of
reasoning that led toe the conflict, by rejecting assumptions in-
volved in those arguments. Shafer’s concept of discounting is a
natural means of representing the ocutcome of such a discrediting
precess. In discounting, bellef In specific hypotheses is
decreased, and proportiopately greater support is assigned to the
universal set (i.e., the chance that the evidence tells us
noething). Onece again, there is no measure of the rellabllity of
an argument in Bayesian theory.

Shafer himself does not address the notlen of an assumption, as just cutlined,
Kor, therefore, does he link discounting te the rejection of assumptions.

More fundsmentally, as noted above, actions in response to confliet, such as
re-examining source credibility, must cccur cutside the thecoretical structure
of belief functiens, Later, In Sectlion 3.0, we propose a system (based on but
going beyond Shafer’s theory) which embeds a bellef function medel within an
iterative ceonflict resolution process, and which utilizes the toeols implicit
within Shafer's caleulus to formalize and direect that process.
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In sum, & major strength of Shafer's theory is the naturalness of the input
format it imposes: Assessments need go no further than the evidence jus-
tifies, "Ignorance” iz naturally represented by assigning support te a subset
of hypotheses, with no further commitment te an allocation within the subset.
& Bayesian must decide among quite definite and distinet, but equally ar-
bitrary, allocations of probability. Weight or reliability of evidence is
quite imtuitively represented as the degree to which the sum of belief for a
hypothesis and its complement falls short of unity. Shafer’s theory does not
permit reassessment of the qualicy of an information source in terms of what
that source says; the credibilicy of one witness cannot be increased by cor-
roboration of & secomd witness or decreased by contradiction. We argue,
however, that these processes are best implemented, in any case, by procedures
of gqualitative reasoning that re-examine sources of evidence as an analysis
proceeds, and recalibrate them in the light of corrcbeoratiom or conflict. As
we shall see, Shafer’'s calculus provides a framework within which useful tools
for that purpose can be developed,

2.3 Men-mopotonic Ressoning

Héem-monotonic logic is s direct effort, within the non-numerie tradition of
artificial intelligence, to address the problem of assumptions and complete-
ness of evidence. The first application of the ideas of non-monotonic
reasoning vwas by Stallman and Sussman {1977), and since that time the theory
has generated intense interest in the arvificial intelligence and expert svs-
tems communities (e.g., Dovle, 1979; McDermott and Doyle, 1980; McDermott,
1982; Relter, 19B0; Hoore, 1985; deKlear, 1988).

Traditional logieal frameworks fail te capture the non-monotonleity of natural
human reasoning. Specifically, traditional formal logies are monotonic, In
that the mumber of provable statements in the system Increases monotonleally
in time asg new axioms or premises are added to the system, In contrast, in a
non-monotonie system a theorem may be retracted when new Information (axioms)

ig intreduced,
Human reasoning is commonly non-monotonle because conclusions must oftem be
arrived at on the basls of Incomplete information, We cammot afford to wait

until all possible relevant evidence is obtained. In the face of incomplete
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evidence, people adopt assumptions, acting as if they are true until evidence
arises to the contrary. For example, I1f a bullding In Belrut is bombed, and
the PLO publiecly claims responsibility, we might adopt a provisional assump-
tion that a faction of the FLO is in fact responsible. If later, however, an
Iragqi govermnment double agent provides believable testimomy that the Iragi
government was behind the attack, we will drop our initial assumption. (Ve
might later re-introduce the PLO assumption {f we recelve further information
which casts doubt on the credibilicy of the Iragl agent). HNom-monotonic
reasoning systems attempt to model this process of revising systems of belief

to accommodsate conflictinmg informatiom.

At any point in time, a non-monotonic system has a list of currently believed
statements, together with a record of how these beliefs are justified. For

example, In the Truth Malntenance System (THS) developed by HeDermott and
Doyle, one basic form of representatlon is:

Statement A  SLl<imlise; oublists>

In this representation, statement A iz assoclated with a "support listc" (EL)
Justification containing two different sets of statements, the Inlist and the
outlist. A is accepted if all statements im its inlist are accepted and no
members of its outlist have beem accepted. A statement with a non-empty out-
list is an assumption: it is accepted provisionally (if its inlist is
accepted), unless or until some member of its ocutlist is shown to be the case.
In ocur example above, the initial attribution of responsibilicy te the PLD was
an assumption, adepted on the basis of the public elaim {inlist), but sub-
sequently dropped vhen evidence was obtained to the contrary from the Iragi
double agent (outlist), Similarly, the credibility of the Iragl agent was it-
gelf an assumption, adopted until evidence to the contrary is obtained,

Az long as new Information 1 consistent with current beliefs, the system im-
corporates the new information by combining it with the currently believed
statements, using ite inference rules to derive new beliefs. It is possible,
howevar, for new Informatlon to lead to an inference that contradicts a ¢ur-
rently held belief. When this happens, a process of dependency-directed back-
tracking iz initiated. The system traces back through the network of
justifications to find the assumptions upon which the contradictery inferences
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depend, and makes revizions to achieve comsistency. One assumption is
selected as the "eulpric,” and is retracted by assuming that some member of
itg cutlist iz true, This causes any statements depending on the culpritc
aggumption to be dishelieved. The process of retracting assumptions and

changing truth values continues until & consistent set of beliefs is obtained.

Unfertunately, the procedure for selecting among alternate belief revisions is
arbitrary in two ways: typically, more than one assumption is implicated in a
contradictory inference, and there is more than one way to reject each of
them, by assuming a member of its outlist., HMoreover, the theory lacks a
measure of the degres of suppert for bellefz, Such a measure could provide
the bagis for selecting among possible bellef revislons and would provide

ugers an index of confidence in the conclusions of the argument.

Fon-momotonic reasoning is typically viewed as an alternative to systems based
on the probability tradition, which employ numerical measures of uncertainty.
In the terrorist example, a Bayesian or Shaferian system would assign a
numerical degree of support to the differenc hypotheses concerning who was
regsponsible for the bombing. Uncertainty is expressed by assigning degrees of
support of less than unity to each of the hypothesesz, When further informa-
tion iz recelved, degrees of support are updated to incorporate the new infor-
mation. In the sense that probabllities may go down as well as up, Bayeszlan
and Shaferisn systems are "non-monotonic,” and belief functioms in particular

have been recommended as & numerical version of non-monotonic reasoning.

We think this is wromg. Current numerical systems are momotonic in at least
three important senmses: (a) Bavesian and Shaferian theory both lack a
mechanism for provisionally accepting an uncertain hypothesis; (b) once a con-
clusion is declared certain (i.e., degree of support = 1), its support cannot
be reduced; and {(c) in Bhafer's system, mew evidence can only decrease the
range of possible belief (i.e., the difference between FL(H)} and Bel(H)), but
can never increase this measure of ignorance {e.g., b¥ prompting the rejection
of assumptions). As they stand, neither Bayesian nor Shaferian theory is an
adegquate substitute for the assumption-based reasoning in non-monotonic logic.
A deeper look at the distinctionm between numerical theories and non-monotonic
logic reveals a fundamental difference in their attitudes toward conflict. In

both Bayesian and Shaferian theories, divergemce among uncertain lines of
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reasoning can be loosely characterized as "stochastie"™: except when probabil-
ity or belief equalz 1, conflict is expecrted to occur some small percentage of
the time, even when both of twoe comflicting lines of reasoning are normatively
correct, due to the imperfect correlation or causal link between cues and
hypotheses, or the chance accumulation of small errors in measurement. From
the polnt of view of non-monctonic logic, however, divergemce can be charac-
terized as "epistemic®™: it is a result of faulty beliefs or metheds. Con-
flicting results are taken as evidence that one or more premises or forms of
argunent that led to the conflict are mistaken.

These two conceptlone of confliet lead to different ratienasles far the process
of combining evidence or lines of reasoning. From the first point of view,
the object is to reduce variance by a blind process of statistically aggregat-
ing evidence, akin te that in which chance errors tend to cancel one another
out across repeated measurements. Both Bayesian updating and Dempster's Rule
fall into this category, as does the theory of uncertainty embodied in MYCIN,
From the other point of view, however, the object iz to improve the overall
truth of a system of beliefs--to explicitly identify potentially erronesous
steps in the argument and to change them.

Ve argue that these views of conflict are complementary rsather than competi-
tive. Probabilistic arguments, although they lead to conclusions in the form
of probabilities or degrees of belief, nevertheless depend on assumptions in
the same way that deterministic arguments do. Assumptions, whether explicit
or implicit in a prebabilistic or belief function analysis, include some that
pertain to modeling (e.g., normality, independence, linearity) and some that
pertain to substance (e.g., the ecredibility of a source, proper functioning of
a technlical cellection system, continued accuracy of a dated observation, ab-
sence of a conspiracy to deceive among apparently unrelated sources). HNot all
of these agsumptions, of course, are made all the time; but unless some such
assumptions are made, apalytic arguments [whether deterministic or probabl-
listic) are condemned to perpetual inconclusiveness., Put another way, it is
never pessible to rule out, on the basis of positive evidence, all the factors
that could undermine the validity of a particular argument, Therefore, in
erder to construct a Bayesian or Shaferian argument that discriminates
adequately among the possible hypotheses, it is nearly always necessary to as-

sume the absence of such facters.
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Ve will argue in Section 3.0 that non-monotonic logic has its most useful ap-
plication as a control process for the application of an uncertainty caleulus.
Its role is to keep track of assumptions and direct the process of belief
revision when those assumptions lead to anomalous results,

2.4 Toulmin's Hodel of Arpument

In the preface to Uses of Argument, Toulmin (1958) rejects as confused the
"conception of ‘deductive’ inference which many recent philosophers [and, we
may add, Al researchers] have accepted without hesitstion as impeccable.™
Toulmin's metivation in that book iz teo turn away from the highly asbstract
character of traditional leogic; to examine actual methods of reasoning in dif-
ferent substantive areas, such as lav and medicine; and to develop a theory of
logie capable of capturing the rich variety of methods in everyday use. 1In so
doing, he developed a framework for argument which may provide a useful

linkage between numeric and non-numerie approaches to Incompletensszs of

evidence.

The basic framework of an argument, according to Toulmin, is as follows
{(Toulmin, &t al., 1978):

Backing
+
Warrant
-
Grounds ~ Modal
Gualifiers, Claim
T
Possible
Rebuttals

Figure 2-1. Toulmin: Strucuture of an Evidential Argument

A claim, or conclusion whose merits we are seeking to establish, is supported
by grounds, or evidence, The basis of this support is the existence of a
warrant that states the general connection between grounds and conclusion:

8.g., a4 rule of the form, 1f this type of ground, them this type of conclu-
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sion. The backing provides an explanation of the warrant, i.e., it provides a
basis (theoretical or empirical) for the existence of a comnection between
ground and claim. Modal qualifiers (e.g., "probably,” "possibly,.® "almost
certainly™) weaken or strengthen the validity of the claim., Possible rebut-
tals are factors capable of deactivating the llnk between grounds and claim,
by asserting conditions under which the warrant would be inwvalid, A way of
reading this structuve fs: Grounds, so Qualified Claim, unless Rebuttal,
since Warrant, on account of Backing.

Toulmin rejects the subjectivist's concept of probability as degree of belief,
on the basis that this is incompatible with the natural regquirement that es-
timates of probability be reliable. If such estimates were purely subjective,
there would be no sense In asking whether or not they were reliable, On the
other hand, Toulmin also rejects the objectivist's definition of probabllity
in terms of frequencies, on the basls that zuch a definition confuses the
meaning of probability {(i.e,, as a qualification of a comclusion) with the
reasons for regarding the event as probable (l.,e,, the cbserved frequencles).
In fact, he contends that, "the attempt to find some ‘thing',.in terms of
which we can analyze the solitary word 'probebility" and which all probabil-
ity-statements whatever can be thought of as really being about, turns out to
be a mistake" (p. 70). He defines probability as a modal qualifier whose
functlon is to qualify the strength of the link between grounds (evidence) and
conclusion, This notion is closely akin to Shafer’s concept of belief as an
evaluation of the validity or rellability of an evidential argument,

Toulmin's framework alse bears some lmportant resemblances to non-monctonlc
logic. Both depart from traditional legie by providing for a process in which
conclusions are accepted unless other propositions (members of the cutlist;
rebuttals) turn out to be true. There are two lmportant differences: (1)
Toulmin proposes a highly differentiated knowledge structure, in which the
roles of grounds, warrant, backing, conclusion, and rebuttals are distin-
guished within an argusment, while nen-monotenic legice proposes a such more
homogeneous, undifferentiated knowledge structure; (2) Toulmin provides for
graded or qualified acceptance of conclusions,

Toulmin's model may find its most zignificant application as the basis for a

data structure representing the uncertalnty in a single srpument, to be com-
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bined with other arguments via some numerical uncertainty caleculus, FBecause
of the focus in Shafer’s theory on evidential links, a synthesizs of Toulmin's
theory with the theory of belief functionms seems a promizing avenue of re-
gearch, and will be explored further im Section ?‘.'}.D

Toulmin fails to explore a further impeortant dimension which relates numeric
and non-numeric approaches: i.e., the linkage between probabilisctic modal
qualifiers (which, as noted above, assess the quality of an evidential
argument) and the assumptions upon which the argument depends {(the rebuttals).
In one sense, of course, an argument is weskened to the degree that it depends
on assumptions; in such cases, says Toulmin, we add the modal qualifier,
"presumably . " to the conclusion. In another sense, however, we become more
certaln of a conclusion, the more we assume, When the conclusion of an argu-
ment is insufficlently definitive for the purpeses at hand, the argument can
be strengthened (1.,e., probabllistic gualifiers express a higher degree of
confidence) by making additional sssumptions, so long as it iz understood that
the validity of the strengthensd argument depends on these new assumptions.
Conversely, when new evidence forces the rejection of an assumption (i.&., a
possible rebuttal turns out to be true), the assessed strength of the argument
must be further qualified or reduced. In Section 3.0, Toulmin's framework is
expanded to include these tradecffs.

2.5 Theory of Endopsements

Paul Cohen's (1985) theory of endorsements, like not-momotenic leogic, is a de-
scendant of the Al-based logle tradition. Cohen shares with Toulmin, however,
a concern to replicate the natural, qualitative structure of ordinary
proceszes of reasoning. It is of Interest, therefore, that both Cohen and
Toulmin foecus on an evaluation of arguments that purport to establish a link
between & conclusion and evidence, We have glready noted that Shafer's
numerical theory had the same concerm. For Shafer, however, belief about the
validity of such an argument can be adequately summarized in a mumerical
measure, the belief funetion, l.e,, the likelihood that the evidence proves
the hypothesis., To Cohen, by contrast (as for Toulmin), it seems ummatural to
assess the strenmgth of an argument without actually saying what the argument
i{s. The problem with numerical approaches, he argues, is that they allow us
to state beliefs without providing justifications. The theory of endorsements
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attempts to provide & consistent format for representing and evaluating argu-

BEnts.

In Cohen's theory, each hypothesis is asseciated with a "ledger" of confirming
and disconfirming "endorsements." Endersements state reasoms for believing
or disbelieving an argument that purports to establish a hypothesis. (Since
the system implemented by Cohen has a rule-based architecture, such argusents
take the form of data and rules.) Finally, Cohen's theory contains procedures
for ranking different types of endorsements in terms of Importance, for deter-
gining when a set of endorsements gqualifies a hypothesis for acceptance, and
for resolving conflicts among hypotheses in terms of the relative strengths of

their endorsements.

Cohen’s classification of endorsements by type iz of Interest to us, since it
sheds light on gualitative differences among the considerations that influence
the relisbility of an argument. Cohen argues that procedures for ranking

hypotheses and resolving conflicts are affected differently by different types

of endorsements. Fiwe categories of endorsements are distinguished:

(1) Bule-condition endorsements characterize the relationship between
a condition clause in the antecedent of the rule and the con-
sequent of the rule. For example, endorsing a clause as flexible
ot inflexible specifies whether data must exactly match the rule
antecedent for the conelusion to be acceptable, or if some dagree
of appromimation is sufficient. Other such sets of endorsements
Inelude maybe-ctoo-general, maybe-too-specific, exset; and suppor-
tive, neceggary,

An additional =zet of endorsements in effect permics condition
clauses to be treated as assumptions. A clause not-x that is en-
dorsed by ostrich is accepted as long as x ie mot acceptable
(i.e., adequately endorsed); a clause mot-x endorsed by closed-
world-assumption is accepted if an attempt to prove x has failed.

(2} EBule-inference endorsements characterize the basis for deriving a
conclusion from its conditiens: 1i.e., model-based, causal, or
correlational.

(3} Data endorsements are characterizations of the data by the person
who supplies it; they include source, type-of-data, and accuracy.

(4 Task endorsements imvolve a comparison of the potential conclusien
of an inferemce with the conclusions of other inferences. They
include corroborate, conflict, redundant, and are used in deter-
mining the sequence with which rules are applied to the database.



(5 Conclusion endorsements are televant after a rule has been applied
and conclusions actually drawn. They include corroborate, con-
flice, and redundant, as In (&), Addicfonal endorsements of this
type (unlikely, modal) involve a comparison of the conclusion to
prior beliefs about its "uzualness.* A final endorsement
(unwarranted) indicates that a conclusion is assumed.

Cohen's approach captures a significant aspect of actual reasoning: the de-
pendence of belief on qualitative characteristics of an argument. In & sense,
therefore, it goes beyond Toulmin's argument framework by specifying relevant
features associated with each component of the argument, Figure 2-7 shows how

Cohen’s taxonomy of endorsement types might be mapped into Toulmin's
framework.

Backing Eule-infarence
e

+
Warrant Eule-condicion
hq___dl'
+
Grounds #Jualifier, Claim
Data t Conclusion
Rebuttals

k‘-nult conditlon (eserich,
cloged world)

Figure 2-7, Endorsement Types Assoclated with Toulmin's Arpument Structures

The chief diffieulty with Cohen's theory iz the sd hoc nature of the qualita-
tive mechanism for ranking endorsements. For example, Cohen provides a scheme
which divides endorsements very coarsely into two categories: “preferred"
versus "not so good or dewnright bad®., However, when hypotheses that have
bocth "good" and "bad® sndarsements must be ranked, additiomal stipulations are
required. Further, even if all endorsements could be ranked by preference,
the problem of appraising groups of endorszements would be unsolved. Thus, the
decizion of whether eme proposition iz better endorsed than another is guite

arbitrary, and svailable procedures can often be insufficiently powerful to

resolve confliets,
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Cohen himself expressez the view that a hybrid approach might ultimately be
desirable, in which the "strength” of an endorsement is numerically assessed,
However, without some guldance as to the nature or meaning of such numbers, a
"hybrid® approach might ultimately prove to be equally as ad hoc as Cohen's
qualitative system. In Section 3.0, we propose a merthod for quantifyling the
igpact of endorsements that ls firmly based on an extension of belief fune-
clon theory.

2.6 Alterpative Probabilistic Approaches to Argument

The basie intellectual bullding blocks of the system to be described in Sec-

tion 3.0 have now been laid out:

a aggessing the reliability eof srpuments (Shafer, but alse Cohen and
Toulmin} :

o meking assumptions explicit {(non-monotonic logic, Toulmin};

o reselving conflict by revising assumptions (non-menotonic logic);

o representing arguments in & natural structure (Teulmin); and

a identifyving features of arpuments that underlie assumptions and

affect reliabilicy (Cohen).

We have argued that the belief function calculus may be a more appropriate
starting point than Bayeslan theory for an assumption-based confllet resolu-
tion process: because it provides a modular representation of evidential ar-
guments &nd a definition of conflict, and because it already contains the
basic elements of mechanisms for Introducing assumptions and discrediting ar-
guments. Although Bayeslan theory has a strong axiomatic foundatlomn, 1t lacks
the expressive power to guantify the reliability of an argument or to measure

ignorance.

The latter claim would in fact be contested from a variety of directions by
Bayegianz who have developed varlants of the standard approach (as discussed
in Section Z.1). Here we can enly very brilefly identify some of these
wariants and indicate the reasons for our current dissatisfication.

2.6.1 Prebabilifving logic. Applications of prebability theory usually as-
sume, impliecitly, that the enly relevant structure among propesitions 1s
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reflected in the probability assessments which we make regarding them. For

example, if

%ﬁ%}-}l,

then D is linked to (i.e., is evidence for) H., There iz no way to determine
thig linkage by simply examining D and H. Yet consider the following

H.'!I'.'E_LI.I[IET!t,'

Pl (Warrant): If witness X says he saw the instsllatiom, it is there.

ol W jon,

F3 ({Claim): The installation is there.

Here, P3 is & logical consequence of the conjumction of Fl amd F2. Thus, if
we know the probability of PL&PZ, we can derive an upper and & lower bound on
the probability of P3. Logical relationships among propositions thus place
constraints on the probabilities, and perbaps hold out some hope for using
probability theory to assess the reliability of arguments,

Several recent theories (Nilsson, 1984; Lagomasinoe and Sage, 1983} address the
lngi:al relationships among the sentences whose probabilitles are belng

sssegsed,

Lagemasino and Sage (1%85). These authors present a framework for imprecise
inference that purports to combine Toulmin’s logic of reasoning and the cal-
culus of probability. In faect, we would argue that their use of Toulmin is
quite incidental to their basic approach. A better charscterization is that
Lagomasino and Sage attempt to probabilify traditional logical relationships,
and this turns out to be inconsistent with evaluation of an evidential argu-

ment.
Lagemasine and Sage use Toulmin's model of arpumentation to frame the rela-

tions among ewventa, and to structure asn inferance model. In particular, the

relationship between two events, grounds D and claim C, are represented as:
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R=(D~c¢c, B T ...}

where W refers to warrant, and B refers to rebuttal, [Thelr use of the term
rebuttal te include the negatiom of grounds or claim appears at odds with
Toulmin’s (1%58) definition of rebuttal as *indicating circumstances in which
the gemeral authority of the warrant would have to be set aside" {(p. 101}.]

The basic methodology is, first, to set up constraints on the probabilities
(e.g., Pri(D) or Pr{D =+ C)) based on legical relationships and probabilicy
theory. Information about the problem domain is then encoded as additional
constraints (e.g., Pr(D) > .5). Finally, upper and lower bounds for any
probability can be obtained by solving the appropriate linear programs (with
objective functlon min Pr(-) or max Pr(-}). In thls framework, constraints on
the probabllity of the warrant, Pr(Dh = Gl, combine with constraints on the
probabllicy of the data, Pr{D)--as well as constraints on probabilities of

varlous rebuttals--to yileld constraimts on the probability of the conclusiom,
Pr{C).

At first glance the probability of the warrant Pr(D -+ C), appears to give a
probabilistic assessment of the reliability of the argument from D to C. If
D=+ C is true, the argument is reliable and C is true {(given D). Thus, eguat-
ing Pr{D + C) with belief in C when I is known to be true, appears to parallel
Bhafer’s concept of support (see Section 2.2 above). Unfortumately, the
parallel with Shafer is quite spurious.

Fr(D = C) cannot plausibly by construed as the probability (or strength) of an
evidential link between D and C as long as "D = C" iz interpreted within
traditional loglie (as the authors clearly Intend). Within traditiomal logic
"D «+ C*" i{s true unless D {5 true and C is false. Thus, P(D + C) = P(D or C).
By the axioms of probabilicy theory, this equals P(D) + F(C) - P(D and G).
Therefore, in assessing the probabllity ef D » C, we are focusing on the
chance the antecedent is false and the chance the comelusion is true, and are
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not addressing the existence of any physically or logically real commection
between the antecedent and the consequent., For example, "If the moon is made
of green cheese, then the PLO is responsible for the attack® would be true in
traditional loglec, since the antecedent is false; yet clearly there iz no
evidential connection. S5imilarly, "If Albany 1s the capital of New York, then
Reagan was FPresident im 1986" iz also true, since the consequent 1s true, A
warrant construed in this way is guite triviasl. It in no way addresses the

impact of belief in D on belief im G, f.e., the strength of an argument.

There is another respect in which Lagomasino and Sage's approach violates our
intuitions about an evidential argument. Since I = C is true whenever C is
true, but is also true 1f D 1s false, Pr(D - C} > P(C); i.&., Pr(D = C) iz an
upper bound on the probabilicy of the conclusion, C, In probabllified logle,
if Pr(D = C) = 0, then P{C) must also equal 0, But if Pr(D = C) did in faet
capture the strength of an evidential argument, it would provide a Iower bound
for belief in C (amalogous to Shafer's Bel(-)). The reason is that C might be
supported by other arguments in addition to D + C. (By the Law of Tetal Proh-
ability, the probability of C is simply the sum of the probability that the
argument based om D is walid plus the probability that that argument is in-
valid and some other argument is correct.) If the argument based on D {5 un-
reliable, then it should tell us nothing about the chance of C (recall our
discuseion of ignorance in Shafer's system). Thus, Pr(Dl + C) does not
adequately quantify our intuitions regarding the reliability of the argument

based on D.

An alternative interpretation of "D =+ C" is as an implicit universal
generalization, Va(Dx =+ Cx), i.e., all instances of D are alsoc instances of C.
The probability of "All D'z are C's" i= not an upper bound on the probability
that a particular D iz C, zince the latter 1= not sufficient to establish the
former. On the faee of it, therefore, this appears to assert a more general
relation between D and €, whieh could be used non-trivially te suppert an ar-
gument for € based on D in a partieular case, Unfortunately, thisz will net
rk either. BSuch a generalization may be true because the antecedent is
;2hlaa for all ipnstances er because the consequent is true for all Instances,
Thus, "For all %, if x is a 20 foot tall person, then x is a spy" would be
true, since mo one iz 20 feet tall; similarly, "For all =, if x is Russianm,

then x cannot run faster than the speed of light" would be true, since nothing
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can exceed the speed of light, In neither case iz there a true evidential
1ink between the predicate In the antecedent and the predicate In the con-
gequent, Finally, note that a single counter-example (i.e., & cage of D and
not-C) 1s sufficient to establish falsity; i.e,., Pr[Vx(Dx - Cx] would be zero.
Yet we often assert the existence of evidential relatioms (e.g., "the public
claim of responsibility suggests the PLD is to blame®) even when the relation-
gship is subject to exceptions (some public claims of responsibility are
spurious).

The source for all these confusions, we believe, is in the well-known in-
ablilicy of traditional legle to capture what is essentlally a subjunctive ox
counterfactual relationship. According te a recent discussion by Rozick
(1981}, datum I iz in an evidential relationship to conclusion & when D
"tracks" C, in the sense that {(a) if C were not true, I would not have been
true; and (b) if C had been true in a different but reasonably similar cir-
cumstance, [ would s£ill be true. Hozick argues persuasively that both condi-
tions are required to exclude cases of aceidental or lucky true belief where s
person would nmot be sald genuinely to know what he believes., When we assess
the reliability of an argument, we are assezsing the chance that some
mechanism (causal or legical) exists which produces tracking of this sert.

For example, when we assess the warrant Pl in the example sbowve (“"If witness X
says he saw the installation, it is there"), we are concerned with witness X's
evesight and truthfulness on this occasion: these are the mechanisms which
might cause X's testimony (D) to track the claim (C). Formulations in tradi-
tional legic do not capture this,

& more proemising alternative would be te drop the truth-functional interpreta-
tlon of D = C as net-D or C, and to probabilify some version of modal, rather
than traditional, legle., Thus, we might be asked to assess constraints on the
probability of "H{D + C)", where "N" indicates an "evidentislly necessary™
link. There is considerable discussion regarding the construal of subjunctive
statements in terms of a pessible would semantics (e.g., Lewis, 1976). But
"H{D <+ C)" might mean that C is true in all possible worlds where D is true
and which are similar te some regquisite degree to the actual world. It is
sufficient here to note {(a) that no plausible metric of similaricy has as yet
been specified, and (b} that no attempts have been made, to our knowledge, to
apply probabilistic constraints to sentences in a modal logic.
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In sum, although Lagomasine and Sage’s framework claims to be based on
Toulmin's structure of arpument, the similaricy is superficlal. The classical
interpretation of logical connmectives is inconsistent with using probabilifled
logic to assess evidential arguments.

Filsson (1984). MNilsson presents an approach that in essential respects is
similar to that of Lagomasinoe and Sage. Hls method iz preszented as a
generalization of classical first-order logle that is "appropriate for repre-

genting and reasoning with uncertain knowledge."

Hilsson starts by specifying a logicel sentence whose truth values are of in-
terest. These could be any conjunction of sentences of first-order logic; for
example:

8= (D, D=C, C}

The truth-value of any one of the three components of this sentence ls bounded
by loglecal conslistency relatlonships, For example, all three components could
be true; this is logleslly consistent, However, the three components could
not all be false; this iz incomsistent, since D + C is true if D iz false,
Note that this bounding is based on the combination of truth-values for all
components of the sentence, not any individual component. Indeed, in the ex-
ample any component could be true or false (value of 0 or 1); it is only com-
binations that are prohibited.

Each permissible copbination of truth-values represents a "possible world,”
that is, a possible combination of true and false components. If the truth or
falgity of each component is represented by the pumber 1 or 0 respectively,
then a possible world can be represented as a three-dimensional vector of
zeros and ones for a permissible state. In the example above, the followlng
four vectors represent all possible worlds:
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If each component of the sentence is thought of as a dimension in three-space,
then possible worlds are represented as four points in that space.

Nllsson next generallizes the interpretation of the wvector by allowing prob-
abilistic "smearing" over worlds, This iz done by allowing probabllity dis-
tributions over different worlds asnd by defining the probabllity of a com-
ponent &8s “the sum of probabilities of &ll possible worlds im which it is
true.* TUnder this definition, probebilities of components will be logically
*permissible,” in the sense that they must fall within the convex region
bounded by the set of possible worlds.

"Probalistiec entallment" s a process in which we are given the probabilities
of some sentences and then compute bounds on the probabilities for other sen-
tences by using the logical constraints described shove. Since logical com-
sistency by itself rarely determines probability uniquely, Nilsson invesa-
tigates supplementary techniques. He both solves for "maximum entropy" prob-
abilities and those produced by pgeometric projection, although neither method
is provided with a basis or defended. In addition, one could presumsably
assess probabilities of "possible worlds"™ directly to derive the desired prob-

abilities, although the assessment problem here seems immense.

The principal difficulcty of Wilssom's approach, from the present viewpoint,
however, L% that (like Lagomasino and Sage) it fails to capture true eviden-
tial relationships. As noted above, these are not adequately represented in
the first-order predicate caleulus., HNor iz it clear how effectively Rilsson's
method could be extended to handle consistency constraints among sentences in
a modal logic. In any case, it is likely that the assessment task would be
encrmously complicated (e.g., by the intrvoduction of pessible worlds contain-
ing sets of possible worlds).

Shafer and Logie. It is illuminating to contrast Shafer's approach with those
discussed in this section. my{(C) can be interpreted as the chance that
evidence collection 1 means that C is true; it depends on an assessment of the
mechanisms that underlie the reliability of the evidentlal argument, e.g., the
chance that the witness had adegquate ewvesight and is truthful., As we noted In
Saction 2.2, in Shafer’s system evidential mechanisms are assessed in a

general way, independently of the actual content of the evidence; thus,
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whether the witness had testified te C or to not-C, honesty and good eyesight
would mean he should be believed; lack of honesty or poor eyesight mesn his
testimony should be disregarded. Shafer's measure of support, m(.), thus cap-
tures the notion of an evidential link directly. For example, given three
hypotheses {Hy, Hy, Hyl, m{H; or Hy) = .3 means there is a .3 chance that the
relevant evidential process {(e.g., reports from a particular witness; statis-
tical arguments making a certain type of assumption; etc.) can discriminate Hy
and Hy from Hy, but not from one another. Outputs from such an evidential
precess would vary depending on whether the truth were in Hy or In (Hy, Hyl.

In shert, the evidentlal process "tracks" Hy versus [Hs, Hq) with prebabilitcy
3.

In paseing, we note that FNozick's (1%B8l) concept of tracking may shed some
further unexpected light onm Shafer’'s approach. Ewidence D "tracks" conclusion
C in the sense that (a) if C were not true, D would not be true, and (b) if ¢
were true (in somewhat different circumstances) D would still be true. But
this formulation turns ocut to imply (by substituting not-D for D and not-C for
C) that D tracks € if and enly Iif not-D tracks not-C, Thus, the assessment of
whether "tracking" exists (llke assessments of m{-}) 1s independent of the
content of the evidence, {.e., whether D or not-D in faet ocecurs, Fallure to
conditionalize on the evidence, while a shortcoming from the Bayesian point of
view, thus has a justification of sortas in its correspondence to A well-

founded concept of knowledge.

Shafer does not pestulate a Iogical relationship between data and warrant, on
the one hand, and conclusion, on the other. Thus, unlike other authors in
this seccion, he doess not seek to exploit such a relationship teo provide a
bound on belief in the conclusion. He directly stipulates that such a bound

is provided by the assessment of the reliability of the evidential link be-
tween D oand G,

Hevertheless, it is possible to apply a belief function analysis to logically
related sentences. Suppose independent belief functions have been assessed on
two sets of hypotheses [...A;...} &nd {..-Ej.--] vhich, in combination, may
have logical implications for a third set of hypotheses, {...Hp...}. Then it
can be shown by methods discussed in Yager (#MIT-508) that
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m(H) = F my(Ay) * my (By)

where the summatlion is over all i, ] such that Hy is logically derivable from
Ay & Bj. Lower and upper bounds on bellef in subsets of (...H,...], e.g.,
Bel{H,} and FLl{H,), may then be computed in the usual way from m(-)}. In our
simple example of truth-functional implication, m(C) = m{D} * m{D - C), This
approach is easily gemeralized to the combination of more than twe sets of
hypotheses.

To what extent can incorporation of logic within a belief function framework
improve on probalified logie? In particular, does m{D -+ C) capture an eviden-
tial link betveen datam D and concluszien C, or does it merely depend, like
Pr{(Dh - C), on belief in not-D or belief in C? Recall that the truth of D = C
means simply that it is not the case that D is true and C false; therefors,
D=¢C is true if D is false, whather or not C is true, and if both D and C are
true., Thus, in a Shaferian analysis, support for D -+ C can be represented as
support for a subset of the hypotheses in the Cartesian product {D, D] x (G,
€}, in particular, m(D + C) = m(C or D) = m{{C x D} v {{C, C} x D)). (Hote
that this is precisely the expression used in Sectlon 2.2 to represent the
support for a hypothesis conditional on evidence.) The key point is that m(C
or D) is mot a function of m(C) and m{D), &s in Bayesian probability theory.
Thus, m(Dl + G} is not affected by evidence that bears directly on the falsity
of D; such evidence is summarized by m(D = (G, €1). Hor is it affected by
evidence that bears directly on the truth of C; that evidence is summarized by
m(C % (D, D)). Rather, m{D - C) summarizes evidence that bears directly on
the falslty of Dnet-C, f.e., on the link between D and €. Thus, D = C may
keep its proper truth-functional interpretation (true If D is false or C is
true); there iz noe need to apply belief to sentences in a modal legie. Incor-
poration of D = C within the context of m{-) removes the triviality and
foeuses concern on the existence of a real evidential connectlon,

2.6.2 Higher-order probabilities. A quite different Bayesglan approach is te
aszgezg higher-order probablility distributiens reflecting confidence in the

first-order probabilities (e.g., Lindley, Tversky, Brown, 1979; Tani, 1978).
The second-order assessments capture the amount of knowledge (or ignoramca}
underlying an assessment of the first-order probsbilities. Thus, a very
sharply peaked second-order distribution centered on .5 reflects a high degree
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of confidence that .5 is the "true” first-order probability (e.g., the conclu-
sion of a long process of sifting evidence). But a flat second-order dis-
tribution whose mean is .3 reflects a high degree of ignorance (e.g., prior to
consideration of any evidence), Second-orvder discributlions of this sort thus
appear to Increase the expressive power of Bayeslan theory, by capturing com-
pleteness of knowledge or reliability of an argument. And they may be used im
higher-order inferences (e.g., regarding hypotheses about the "true" first-
order probability), to resolve conflicts among incomsistent probabilistic
analyses,

This approach, however, suffers from a warlety of drawbacks. In the first
place, it threatens an Infinite regress of high-order judgments; secondly, the
assessment burden can be massive (especially if higher-order non-independence
were to be taken into account); and thirdly, the formal justifications as-
sociated with Bayesian theory, e.g., avoiding a "Dutch book,"™ are not compell-
ing at the level of second-order bets {or bets about bets).

Mest importantly, however, the meaning of second-order probabilities is itself
unclear. One approach 15 to regard them as capturing "measurement error” in
asgessing first-order probabilities., But hew can we be uncertain ahout ocur own
current subjective probabllities (especially if we conatrue them as equivalent
to cholces among gambles)? More to the polnt, why would such uncertainty (if
it exists) be of interest in resolving conflicts among lines of reasoning?

To make the latter question vivid, consider two preobabilistic analyses regard-
ing the same hypothesis. The first analysis vields a probability of .E; the
second yvields a probabilicy of 6. According to the measurement error ap-
proach (Lindley, Tversky, and Brown, 1979), reconciliation of the two analvses
glves us an estimate of our "true" probability that cypieally lies betwveen .6
and .8 - 8.g., .7. What this ignores is the possibility that the two analyses
tapped independent sources of evidence. Suppose that is the case, and that
the two collections of evidence both faver the hypothesis, Then the second
analyses should cause us to increase our probabilicy (e.g., from .B te .9),
not decrease 1t (from .8 to .7). In other words, the measurement analogy
{applied in this way) precludes uge of second-order probabilities to evaluate

distinet evidential srguments ., It treats the problem as an inference about
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someone's Inner state rather than about the world, and fails to combine the

two arguments properly in terms of the apount of independent evidence in each.

Suppeose instead that we assess second-order probablilities regarding the com-
ponents of a single probabllistic analysis (e.g., likelihood ratios and prior
odds in Bayesianm updating), and then compute the second-order distributlon for
the output probability (e.g., the posterior odds). Unfortunately, the spread
of the second-order output distribution is larger the more components we im-
troduce to the argument (since measurement error propagates to the comclusion
in & standard way). Yet we would expect the relisbility of the output prob-
abilicy to be greater as the number of items of evidence we consider im-
creases. Again, it seems clear that measurement error does not capture
reliability of the argument.

An alternative interpretation of second-order probabilities refers to our fu-
ture subjective probablilities; i.e., we assess the chances that our first-
order probability will assume various possible values after we obtain further
information., To produce such an assessment, however, we mist make rather ar-
bitrary decisions to delimitc in terms of time or effort the future evidence we
consider relevant (since most Lf not all probabllicties will become elther zero
or one after all future evidence 1z obtalned); we sust then make extremely
speculative and hypothetical judgments about what we are likely to learn
within the delimited sphere,

Even then, the usefulness of the resulting assessments Is In doubt. Suppose
our task is to declide whether or not to revise a probabllity assessment
derived by methed A&, because of conflict with another assessment derived by
method E. It seems polntless to demand a direct assessment of the
shiftability of the probability derived by A im the face of future evidence
{e.g., B): it is shiftability that we are trying te determine in resolving the
conflict between A and B. In other words, the second-order probabilities
don't help much in this problem, since they require that the problem be solved

before they can be assessed.

It seems more useful to cbtain assessments of the reliability of argument A
and of the reliability of argument B. The esssential difference is that in as-
segsing Bayesian second-order probabilities, one must somehow consider pos-
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gible future evldence whether it pertains to the present argument of to other
{possibly unanticipated) types of argument, In assessing reliabilicy,
however, we focus on the argument at hand: how thoroughly have the assumptions
been checked, where could it go wrong and how? To be sure, shiftablility is
correlated with reliability: The more reliable we think an asrgument is in its
own right, the less likely it is that some future argument will be devised
which impugns it--and we will assess a correspondingly narrow range of future
probability values. Hevertheless, relisbility seems to be the mere fundamen-
tal, and easier, judgment.

2.6.3 Evidentiary value, A final Bayesian approach, proposed by a group of
Swedish researchers {(Halldewn, 1973 Edman, 1973: Gardenfors, Hansson, and Sah-

lin, 19E3) is closer in some respects to Shafer’s work, 4s for Shafer, the
focus of attemtion has turned from the truth of a hypothesis to the probabil-
ity that the evidence proves the hypothesis. The essential difference between
the Swedish work and Shafer’'s is that the former conditionalizes the assess-
ment of an argument’'s credibility om what that argument (and other arguments}
have sctually concluded. This work howewer, lacks most, if not &ll, of the
vittues of the belief function representation (see Shafer, 1%984). Formula-
tions which conditionalize on the evidence become extremely complex even for

the simplest examples., Little progress has been made In deriving rules for
the combination of evidence lnvolwing the full range of cases te which

Dempster's rule applies, Finally, this work sacrifices a significant virtue
of Shafer’'s system, the sbility te segment evidence inte independent argu-

ments .

2.6.4 Copclugions. Im sum, a variety of extensions to traditional Bayesian
Theory have been proposed, with the explicit object of capturing such notiona
as causal or evidential relatiomships and completeness of evidemce. Thesa ax-
tensions include (a) applying probabilities to logically interrelated sen-
tences, (b) applying probabilities to probabilities, and (c) assessing the
prebability that an evidential relationship exists, conditional on the
evidence. The first approach fails because of a lack of expressive power in
the first-order predicate calculus to represent causally related sentences.
The second approach falls because of the lack of an appropriate; evidentially
relevant interpretation of higher-order probabilities. The third approach
does capture the relevant concepts, but sacrifices simplicity and modularity.
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The model presented in Section 3.0 addresses this problem in an altogether
different way: not by elaborating on a first-order uncertalncty caleculus, or
re-applyving it at a higher level, but by attentlen toe cthe reasoning process by
which the calculus ig applied. It thus retains both the simplicity snd the
medularity of Shafer’s representation (and its direct approach te the concept
of an evidential relationship), but captures interdependencies by embedding a

Shaferian argpument withim a corrective process of heuristic reasoning.

Let us stress, however, that a belief function approach is not necessarily the
only, or even the best, model of uncertainty for incorporation in such a
heuristie confliet resolution process. We are impressed by the naturalness
with which it can be made te serve in such a process (Section 2.6.2 sbove),
and have found other approaches less satisfactory inm this respect. However,
we would argue that the application of any uncertainty caleulus is based on
agsumptions, hence, is guided by & heuristie, iterative process. Other ap-
prosches which in the future way prove more satisfactory, but which at present
seen insufficiently well developed, are Kyburg's motion of comvex Bavesian
sets (1985, 1986) and Nau's axiomatic extension of Bayesian probability to al-
low nested sets of proebability intervals with associlated measures of con-
Eidence [1986).

2.7 Fuzzy Set Theory

In this section, we turn to & quite different type of uncertainty: the fuzzi-
ness or vagueness that characterizes ordinary language in virtually all fields
of reasoning. BSince L.A. Zadeh advanced fuzzy set theory in 1965, an enormous
amount of interest, and a very large literature, has been generated. Most of
this interest has been theoretical, concerned with the mathematical implica-
tions of the theery, but there have been a number of attempts te apply the
theory to practical problems. Zadeh argued that most highly complex problems
could not be understood or modeled at the level of precision demanded by
traditional analytical tools. The appropriate {and intuitively natural) ap-
proach to such problems imvolwves imprecise concepts and methods of reasoning.
Attempts to eliminate such imprecision inevitsbly involwe arbitrary, ad hoc
decisions and, in the end, distort one's understanding of the central facts.

Nevertheless, analysis (especially with computers) requires precision. To
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resolve this paradox, Zadeh introduced the now well-known concept of the fuzzy
get--a set with imprecise boundaries. While ordinary sets have all-or-mothing
membership functions, a fuzzy set has a membership fumction w,(x) which
represents the degree to which an element x belomgs to some set A. If p,(x) -
1 then x fully belongs to A, while if g (2} = 0, x does neot beleong te A. An
intermediate value, such as pg(x) = 0.6, indicates that x belongs to the set
to some degree. Fuzzy sets are thus a precise tool for representing and
manipulating imprecise notlons,

Application of fuzzy set theory involwes: (1) the tramslation of an imprecise
natural language problem inte & representation involving fuzzy sets; (2) the
use of a calculus to transform the initial fuzzy sets into other fuzzy sets
representing the reguired output variables of the analysis; and (3) rein-
terpretation of the results in imprecise natural language {(see L.A. Zadeh,
1975, The first and last steps are crucial Lf the flaver of fuzzy set theory
1z to be fully captured. The core ldea {5 to construct a caleulus for the
formal (i.e., precise) manipulation of imprecisze concepts, which takesz in im-
precise inputs and puts out imprecise outputs.

Furzy set theory providesz a powerful range of tools for (a) interpreting the
meaning of natural language utterances, and (b) fuzzifying any existing legi-
cal or mathematical structura. The issues of concern to us in this discussien
are, first, whether these tools cam be used to construct a viable approach to
evaluating evidential arguments, and second, aspects of reasoning relevant to

Intelligence analysis that are captured by fuzzy logic but not by other ap-
proaches,

Consider the follewing exchange:

G: How large is the enemy installation?
A It's pretty large, 300 personnel are assigned there,.

In fuzzy set theory, the denotatlien of "large installation® could be repre-
sented by a fuzzy set membership function, BSuch a function gives the degrees
of membership for different mumbersz of personnel im the fuzzy set "large in-
stallation,” e.§., p large-installation (300 persomnel) = .4 p large-
installaticn (B00 personnel) = ,9; ete, The impact of the gqualifier "pretty"
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might be represented by a simple transformation of this function:

T = P
Fpretty-large-installation {'}“{“largaainatallatinn {'}]IIE' LIl el
Se,

Fpretty-large-installation(300 personnel) = 42 o e,

Twe concepts, degree of truth and possibility, are at the core of Zadeh's
theory of fuzzy reasoning. Both are defined in terms of fuzzy sets. If we
know the installation has 300 personnel, then the degree of truth in the claim
that it iz large, ri{installation is large), equals "largq-installa:iuntauﬂ
personnell= 4, Copversely, suppose we do not know the exact nusber of person-
nel asgipgned to the Installatien, but we do know that it iz large (e.g.,
through frequent interception of signals or sightings of supply activity).
This proposition {"the imstallation is large") induces a possibility distribu-
tion on related, perhaps implicit, variables (in this case, the number of
personnel). In other words, given that the installatlon is large, we can as-
glgn a degree of possibilicy to any given size. The degree of possibility is

Jusc the degree of membership of that size In the fuzrzy set "large
installacion®,

Fuzry membership functions can be combined vwia operations which represent
"furzifications” of the wususl set-theoretic and logical operatioms (union, in-
tersection, implicatiom, etc.). For example, according to the most commonly
used definitions of intersection and union,

pap(x) = max{py (x),ug{x))

Barplx) = mindp, (x) , pplxd)

In other words, the degree of membership of an object or wvalue x in the union
[intersection) of two fuzzy sets, A and B, ils equal to the maxisum (minimam)
of x's degrees of membership in A and B, respectively.

In the evaluation of an evidentlary argument, implication may play a key role.
Recall that In classical logle, a statement of the form p+q (if P, themn q) i=s
true as long as It is not the case that p Is true and g is false (ses Sectiom
2.6.1 above}., There are a varlety of ways to fuzzify this relation. The as-

sential imtuition behind one popular approach (Gaines, 1977) is a direct
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generalization of the traditional definicion: The degree of truth of the con-
clusion {(q) must be at least as great as the degree of the truth of the an-
tecedent (p), assuming the rule itself {(p=+q) iz completely true. If the
degree of truth of the rule is less than one, then to that degree the conclu-
sion may be less true than the antecedent. If the degree of truth of the rule
and the antecedent of the rule are characterized fuzzily rather than
precisely, linear programs may be used to find the degree of truth of the con-

clusion.

In fuzzy set theory, propositlions say involve a variety of different types of
fuzzy hedges: truth-qualifications ("wery true," "pretty true," ete.},
possibility-qualifications ("possible,® "almost impossible,” "gquite possible";
etc.), and probsbility-qualificationa. The latter includes fuzzy probabil-
ities like "quite probable" and "not wery likely," in addition to fuzzy quan-
tities such as "mest", "usually,™ "several," "few" and "mere than half".
Hedges are themselves interpreted within the theory as fuzzy sets. Thus,
truth-qualifications are fuzzy sets contsining numbers between [ and 1 to
varving degrees. For example a degree of truth of .9 might belong to the set
"yery true” to the degree .8, while degree of truth .4 might belong only to
degree 1. Thus, "it's very true that this is a large installation™ induces a
possibility discribution over the degrees of truth of "this is a large instsl-
lation.”

With these tools, a large variety of fuzzy reasoning processes T
can be explicared: e.g.,

Fl It iz wvery true that if an installatiomn is large, it is dangerous.
B2 This Iinstallation s soderate in size,
F3 It iz only slightly true that this installation is dangerous.

In this argument, both the datum, P2, and the warrant, Fl, are imprecise.
What is of special interest is that the datum {(a moderately sized
installation) and the antecedent of the rule {a large installatiom) do not ex-
actly match. In fuzzy set theory, the applicability of the rule is not all-
or-none; the strength of the conclusion is diminished, but not destroyed, as a

function of this dissimilarity. The degree of truth of the antecedent i{s com-
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puted as the intersection of the two fuzzy sets, "large" and “"moderately

gized":

Brrpe (Installatiom is large) = sup [“larga (nla quda:ataly-largg{n}]

where n ranges over pusber of personnel and "A" is the min operation,

To what extent can fuzzy hedges and fuzzy leplication be utilized to assess

the strength of an evidentiary argument? Consider the following warrant (cf.,
Sectlen 2.6.1):

It is wery true that if witness X says he saw the installation, it is
there.

The hedge "very true® induces a possibility distribution over the truth valus
of the implication. But for any of these possible truth values to be correct,
all that is required is that the antecedent not exceed the conclusion in truth
value by more than some specified amount. Thus, "if the moon is made out of
cheese, then the installation is there" would have degree of truth one, since
the degree of truth of the antecedent is zero. Fuzzification of truth-
functional implication thus provides no escape from the problems identified
earlier with traditional logic. Assessments of degree of truth in this com-
text do not capture an actual evidential link, and {(to the degree that the am-
tecedent is true) are reducible to direct assessments of the degree of truth
of the conclusien.

An alternative approach within fuzzy logie is to use probability-qualifica-
tions rather than truth-qualifications. Probablility hedges and fuzzy quan-
tifiers (like “usually") are fuzzy sets whose members are proportions or rela-
tive frequencies, rather than degrees of truth, Thuz, consider an alternative

versieon of our warrant:

Usually, when witness X says he saw an Installation, it is therae.

The hedge "usually® induces a possibility distribution over the proportion of
eases In which, vhen X reported he saw an installatien, the installation was
there. Such hedges generalize traditional universal quantifiecation (®all") in
several ways: (1) fuzzy quantifiers make many more dizseriminations than the
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traditional "all™ and "some® {e.g., "nearly all,"” "most,” "a few," gete.); (1)
quantifiers do not correspond to exact proportions, but include differemt
propertions to different degrees; and (3) the proportions themselves may be
fuzzy (l.e., cases in which witness X said he saw an airplane and it was or
was not there, might count toward the proportiom--through to a lesser degree
than cases where an installation was reported). Thus, it might be possible to
gauge the strenmgth of an evidential link by selection of a fuzzy qualifier
from the rough continuum ranging from "nope" te "all."

This appreach avoids some of the problems asddressed in Section 2.6.1 in con-
nection with universal quantification, While "Pr {for all =, if % is F them x
is G)™ is zero if there is a single x which is F and not G, "usually (F's are
G'5)" appears to describe a strong evidential link where most, though mot all,
F'e are G'=s; "few (F's are G's)" describes a weaker link; ete, HNevertheless,
wa argue that this approach fails to capture adequately the notlon of an
evidential link. First, since probability-hedges are defined in terms of
propertions or relative frequencies, there is no provisionm for propagating
such measures to assess the strength of a particular, unique conclusion (is
thisz reported installation actually there?). More fundamentally, such hedges
(like universal quantification) miss the subjunctive (counterfactual) nature
of evidentlal connections (Sectionm 2.6.1 above)., The point of the warrant is
that 1f the installation were not there, witness X would not have reported it:
there is a mechanizm (good eyvesight, adequate visibility, honesty, ete.) which
ensures that the evidence "tracks" the hypothesiz on this occaslon., That
reports from thisz witness have been true In the past is evidence for the
existence of tracking mow, but is not the same thing (imagine the witness has
just gome blind).

A third problem with this approach is that furzy probabilities do not change
in an appropriate way in the course of an evidentisl argument. An argument
based on Bayesian updating (Section 2.1) can be fuzzified by providing fuzzy
rather than exact likelihoods for the evidence given the hypotheses (e.g.,
this obhservation is "pretty likely"™ if H is true, but "very unlikely™ if H is
false). As we add items of evidence in this way, however, the degree of im-
precision in the conclusion increases rather tham decreases. Fuzzy probabil-
ities, therefore, appear to capture imprecisiom in the assessment of probabil-

ities, e.g., "measurement error” (Sectiom 2.6.2 abowve), rather than un-
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relisbility or incompleteness of the evidential argument. The former in-
créases as more sources of errer are added: the latter decreases as new items
of gvidence are consldered.

Still another approach to evidential evaluation within fuzzy logle involwves
the use of possibilicy-qualifications, rather than truth-qualifications or
probability-qualifications. Possibility hedges (like "impossible" or “wery
possible™) are fuzzy sets that take degrees of possibility as members. Thus,
"it is wvery possible that the installation {s there® induces a higher-order
possibility distribution over the possibility that the Installation is there.
First-order possibility measures of this sort intuitively do capture & notion
quite close to the strength of an evidential link: i.e., the degree to which
the evidence fails to exclude a given hypothesis. (A correlative notiom of the
*necessity” of H can be defined as 1-Poss(H).) Horeover, it turns ocut that
Shafer's plausiblility, PLl{+} (Section 2.2 above), is a possibility measure in
Zadeh's sense when the subsets te which bellef s assigned are nested, (In
fuzzy logle, there is a simple rule for deriving the pessibllity of the union
of two sets from the possibilities of the sets:

Poss (AW B) = Max (Fos{A), Pos(B)).

This rule slso applies to Shafer's PL{-) for conscomant, i.e., nested, belief
functions. ) However, consonant belief functions are only one special case of a
belief function model. HNor is there any guarantee that the combination of
consonant belief functions via Dempster’s Bule will result in a new consonant
belief functionm. Zadsh's Rule for combining evidence (i.e., for combining
different pessibility measures on the same hypotheses, based on independent
evidence) is:

PﬁﬂllIE{H} = Hin {Pﬂ'ﬂnl[‘.H}1 PD*E{H}}-

Shafer (1P81l) has polnted out this rule may be regarded as the strongest com-
bination rule for consonant belief functions that guarantees a consonant
belief function as the coneclusion, Thus, although Zadeh's possibilicy measure
can be zeen in one sense as a generallization of belief functions (permitting
furzy as well as precise specifications of Pl{-)) in another semse it iz a

restriccion (applving only to consonant elements).
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In sum, fuzzy logie Iz a highly flexible and versatile tool for handling im-
preclsion, a concept of uncertalnty not modeled well by the other theories we
have discusged thus far. Unfortunately, the meaning of fuzzy measures iz not
always clear. In particular, therea are neither behavioral specifications (as
in the betting Interpretations of Bayesian theory) nor csnonical examples (as
Shafer believes are important). The procedures for combining membership
functlons are mot unigue, and the justificatiom for the ones Zadeh recommends
iz not clear. Horeover, no consistent method appears to have been developed
for translating output membership functions back into linguistic expressions.
Finally we have shown that efforts to use fuzzy logle to define an evaluation
measure for the rellabilicy of an evidentlal argument are Inadequate, except
for an appreach (possibility measures) that is in critical respects a special

case of Shaferian belief functions.

The majer contribution of fuzzy set theory, we feel, may be the identification
of a type of uncertainty not addressed at all in other frameworks. The core
idea iz that gimilaricry plavs a rvole in reasoning that cannot be equated with
concepts like chance, reliability of an argusment, or completeness of evidence,
Consider the example abowve, involving the partlsal mateh between a rule antecsa-
dent ("large installation") and an observation (a "moderately sized
installation™). In determining whether or mot, or to what extent, the rule
should be applied, the issue is not uncertainty about the facts (i.e.,
chance). We are not wondering about the chance that a moderately zized in-
stallation is, or is not, large. The problem is that there is no well-defined
situation which would determine the outcome of a bet on this matter. Fuzzy
snt theory gives a plausible account of this problem: the denotations of
"moderately sized" and "large" are nelither ldentical nor disjeint, but owver-
lap. Nor are we wondering about the exact size of the imstallation. Supposze
we know its size: e.g., 200 personnel; there is still the gquestion of the
degree to which such an installation is ®*large.® Efforts to translate such
concerns into the lamguage of probability theory will inevitably involwe (a)
arbitrary and ad hoc specifications of cuteffs (e.g., when an installation has
more than 300 persommel, it abruptly becomes "large"); and/or (b) unnatural
shifting of the preoblem (&.g., the chance than an English-speaker would say

that an installation with x number of personnel was large).
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Partisl matching of current observaticns and stored knowledge or previous ex-
perience is, we are convinced, an inescapable aspect of any intelligemt
reasoning process, We would argue, however, that effective implementation of
such & concept reguires a wviable motion of the reliability of an evidemtial
argument. In short, the most common effect of an imperfect match between
evidence and knowledge is to reduce the impact of the argument based on that
evidence. The system to be described in Section 3.0 thus links dissimilaritcy
of rule antecedent and evidence to discounting of an argument In a belief
functlon framework,
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3.0 A SELF-RECONCILING EVIDENTTAL DATABASE

3.1 o i t

In communicating conclusions based on incomplete, unreliable, and incomsistent
data, the intelligence anmalyst faces a dilemma. If he provides am explicit
account of divergent possible interpretations, confused policy-makers may ob-
ject that he has hedged too much. If he reports only the uncontroversial
elements of divergent wviews, he may be accused of being too bland, Heverthe-
less, if he takes a definite position, which turns out te be wrong, the con-

saquences may be even worse.

Although increasing attention is being given to the problem of representing
uncertainty in database systems, very little work has been done on methods for
representing the evidential arguments that underlie assessments of uncer-
tainty, Yet understanding and manipulating such arguments are essentlal to
the Intelligence analyst’s tasks of making sense out of unreliable and incon-
sistent data and communlcating cenclusiens. A key element in all these tasks,
we contend, is the utilizatlon by the analyst of qualitative and approximate
causal models of how the avallable data could be linked to an as yet unknown
"ground truth",

In this section we turn to the description of a system, the Self-Reconciling
Evidential Database, which addresses these problems on three levels: {a) by
providing a generic schema for an evidential argument based on the underlying
causal chalins that link conclusfions and evidence; (k) by permitting the
apalyst to investigate different representaticns of the same argument through
adoption and revision of assumptions; and (c) by embedding evidential argu-
ments within a higher-level "metareasoning” process that responds to conflict
between different lines of argument by tracing the assumptions involved in the
conflict and recommending revisions.

#ﬁﬁm SED represents evidentisl arpuments within a framework that combines elements
from numerical models of uncertainty (Shafer/Dempster belief functioms) and
aspects of mere gualitative approaches to reasoning (based on Toulmin and Paul
Cohen). The latter provide a matural structure for representing the com-
ponents of an arpument and factors which affect its wvalidity. We stress,

however, the presminent role of causal relationships ameng these facters - in
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agreement, incidentally, with recent philosophical analyses of knowledge in
terms of explanstory comnections linking evidence and conclusiens (e.g., Har-
man, 1973; Nozick, 1981). Shafer’'s theory of belief provides an effective
caleulus for capturing these causal relationships. In addition, it provides a
quantitative measure of the strength of an argument (in terms of uncommitted
belief), methods for cembining arguments, and, inm an extension of the theory
to be described here, tools for representing assumptions (as decisions regard-

ing the sllocation of uncommitted belief).

i‘lf:r*"w
A

Ee design of SED rests on the premise that there is no uniquely "true"
problem representation at the level of probablilitlies or degrees of bellef, A
variety of valid models may exist which differ in the precizion and/or diver-
gence of their conelusions, as well as in the number and magnitude of the as-
sumptions which they require, Assumptions may pertain to medeling (e.g., nor-
mality, independence, linearity) or they may pertain to substance (e.g., the
credibility of a source, proper functioning of a data collection system, com-
timued accuracy of a dated observation, sbsence of a conspiracy to deceive
among apparently unrelated sources). Hot all of these assumptions are made
all the time; but unless some such assumptions are made, analytic argumsents
are condemmed to perpetual inconclusiveness. SED permits the analyst to ex-
plore a space of problem representations by imposing or rejecting assusptions
regarding the credibility and directlion of an argument. Investigation of such
& space may be utilized to develop the analyst's understanding of the problem,
test the sensitivity of conclusions, and select a representation that suits

the informatlon regulrements of intellligence consumers,

-:i‘;‘L h
l‘-:'. &
gﬁlﬁﬂglandard numerical approaches te uncertainty regard confliet of evidence as

stochastic; it iz bound te occur by chance some portiom of the time when
sources of evidence are imperfectly correlated with hypotheses. Thus, methods
for combining evidence (e.g., Bayes' Rule or Dempster’s Rule) arrive at con-
clusiona by a process akin te averaging, in which different bits of evidence
are aggregated. SED encouragesz an alternative point of wiew: that conflict
of evidence can often be regarded as a symptom of erroneous assumptions in the
arguments that contributed te the confliet. SED, therefore, uses conflict as

an opportunity te learm, 1.e., to diagnose and remedy errors in reasoning, and

thus to develop lmproved arguments.

3-2



The principal goal of this section iz to explicate the concepts incorporated
in SED. Howewer, to keep the discussion from becoming too abstract, we shall
do =0 in the context of & concrete applicatiom to am illustrative intelligence
problem. Moreover, we will refer throughout to displays in a hypothetical
copputer implementation. It will be assumed that the user, an intelligence
snalyst, interacts with the implementation via a keyboard and a mouse and
pouse button. The mathematical basis of the system is described in more
detail in Appendices & and B.

3.2 A Hypothetical Intellipence Problem

For historical and geographical reasons, the Soviet Unlon iz extremely con-
cerned about the military capabllities of West Germany. In particular, a
major concern of the Soviets is that West Germany should remsin & nen-nuclesr
state. The Soviets have recemtly expressed concern through diplomatic chan-
nels that the West Germans may be developing a muclear weapon. The Soviet am-
bassador has cited reports, belisved to have originated in East Germany, of
"peculiar activity" around a spent fuel pond at a West German reactor. The
President's advisors have informed him of the Soviets' concerns, and have
recommended that he gather information on the matter and formulate a reply to
the Soviets. Az & consequence, the President has called in the director of
the Central Intellipgence Agency and asked him to prepare a briefing on the

question of whether West Germany possesses a nuclear weapon.

The following items of evidence have been gathered for inclusion in the
report.

1. West Germany has signed the Treaty om the Non-Proliferation of
Muclear Weapons {(MPT) as a non-mucléar weapons state.

2. West German nuclear facilities are inspected by IAEA inspectors and
West German nuclear material is under Agency safeguards. The Inter-
national Atomic Energy Agency’'s {IAEA) Safepuards Implementation
Report (SIR) stated that "materials under Agency safeguards in the
vear remained in peaceful muclear activities.”

3. The Vest German govermnment has recently and repeatedly made public
statements against nuclear proliferation,
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4., The United States {8 committed under Its WATD obligations to defend
West Germany against attack,

3. The Unlted States has not received any reports suggesting the existc-
ence of clandeatine muclear facilities or nuclear weapons tests in
West Germany.

6. A former inspector at a West German muclesr facility has testified
that his reports of anomselous material account imbalances at a West
Cerman facility were covered up by the IAEA.

7. The USER, as noted above, has reported "unusuasl activicy™ in regard
to a2 West Cerman reactor.

B, West Germary has lodged complaints about the frequency of IAEA in-
spections,

9., West Germany has lodged complaints sbout the frequency of IAEA in-
spections.

3.3 g Euye d &

In SED, items of evidence support conclusions only vias srpumenta. The analyst
is thus encouraged to state the reasons why a given conclusion might follow
from a particular piece of evidence--not simply a number measuring the degres
to which the conclusiom is associated with that evidence. Arguments in SED
will typically have a natural causal structure. Reasons for {(or against) a
conclusion reflect the analyst's understanding of the sequence of events and
processes that go between what the analyst wants to know and the avallable
evidence. Analysts naturally reason In terms of causal chains of this sort In
order to evaluate the reliability and significance of a piece of evidence.

The first step in an analysis is to structure the problem., In SED, this means
(a) ldentifying the hypotheses about which the analyst is cencerned, (b} lden-
tifying the available evidence and (c) specifying the arguments which link the
evidence to the hypotheses, Flgure 1 1llustrates the result of this precess
for evidence item 2, the IAEA report certifying that West German nuclear

material has remained in peaceful nuclear accivicies.
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As shown in Flgure 1, the analyst has identiflied three relevant hypotheses:
nucleay materfial has not been diverted, mueclear material has been diverted for
the purpoge of building a West German bomb, and nuclear material has been
diverted to another country which intends to build a bomb. A given item of
evidence may support any subset of these elementary hypotheses. For exampls,
the IAEA report indicating mo anomalous activity supports the conclusion {ne
diversion}. However, the former inspector’'s report of a cover-up [evidence
item 7) provides support for the subset of hypotheses {diversion for West Ger-
man bomb, diversion to another country}, since it points to diversien, but
EaLi: to digeriminate between the two purposes for which the diversion might
have taken place. By contrast, the commitmemt of the U.5. to West Germany’s
defense (evidemce item &) suppeorts the subset {no diversion, diversion to
another country} since it disconfirms the claim that West Germany would build
a bomb for itself, but does not exclude the possibility that West Germany is
assisting some other country. The conclusions of an argument are thus subsets
of hypotheses; and these may be large or small depending on the power of the
evidence and the argument based upﬁﬂ it to d{f:riminata among the pos-
sibilities. A totally inconclusive argument is maximally imprecise; it has &=
a "conclusion" the universal set, consisting of all three elementary

hypotheses.

The star in Figure 1 under the hypothesis of no diversion indicates that the
analyst intends to construct an argument, based on the IAEA inspectlon report,
with the conclusiom that no diversion has taken place. For the IAEA report to
prove this conclusion, a variety of premises must be asserted. The analyst
has enumerated these premises in the ares lsbeled "Backing and Assumptions.”
These are the conditions which must be satisfied for the evidential limk be-
tween the IAEA report and the conclusion of no diversiom to be walid. They
are here stated in the form of "rebuttals" to that linkage; i.e., unless any
of these conditions holds, the IAEA report proves ne diversiom has taken
place. The analyst's argument is this: iIf there has been noe successful con-
cealment from IAEA inspectors, no opportunities for diversion of material
during the absence of an inspector, no intentional falsification of data by
the inspectors, no errors dus to inspector incompetence, no hampering of in-
spectors by nuulgar plant personmel, no statistical error in the analysis of

the data, and no bias in the interpretation of results, then the IAEA report
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proves that no diversion has taken place.

The analyst constructs such a list by asking himself what factoers could dis-
rupt the causal relationships that ordinarily limk the truth of different

hypotheses with different types of evidence. For example, a typical causal
chain would be:

Mo Diversiom -+ Inspectors - Inspectors -+ Data = Conclusions = Report No
Ferform Make Analyzed  Formulated Diversion
Observations Reports

Similarly,

Diversion - Inspectors -+ Inspectors - Data - Conclusions -+ Report
FPerform HMake snalyzed Formulated Likely
Observations Reports Diversion

It is by virtue of these causal relationships that the evidence (the IAEA
repert) covaries with the truth about the hypotheses regarding diversien (ecf.,
Hezick, 1%2El). Each of the premises in the core arpument ls concerned with a
different way that one of the links in these chains could break,

Evidential arguments may be classified in terms of the type of causal connec-
tion by means of which they link conclusions and evidence, Such linkages may,
in prinecliple, iowvolwve arbitrarily large and complex networks of causes and ef-
fm:i?; In any case, they will not always be as direct or as simple as Iin the

TAEA example; vet, they appear to fall into a small set of characteristie,
recognizable patterna.

The IAEA example involwves evidence linked by a direct causal chain te a past
gsat of avents (i.e., imcidences of diversion). A slightly more complex pat-
tern occcurs when the evidence and the event of inmterest are linked only by
virtue of sharing a commen cause, For example, suppose the guestion before
the anaslyst iz whether or not muclear material is currently being diverted,

and the most recent [TAEA report pertains to inspections conducted a weer in
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the past. A causal chain of the following sort links the IAEA report of
likely diversion at time T; to the hypothesis of diversiom in the present:

Continued Continued
Policy of - ATEANN - Palicy of
o Diversion Diversion
Decision HH* Diverslon Diversion
to Divert {Time = TE} (Time = present)

)

Diversion = Inspectors - Inspectors -+ Data -+ GConclusions - ERepert

(Time = Ty) Perform Make Analyzed Formulated Likely
Observations Reports Diversion
at Tq

hccording te this argument, two causal sequences are operative, with a common
origin In an earlier VWest German decision to diveret., One s fdentical to the
sequence discussed above, in which the significance of the IAEA report for
past incidences of diversion is evaluated; the other addresses the causal con-
tinuity of diversion polley and practice from that time to the present. An
argument based on this causal structure would thus reguire additional premises
to ensue that the second causal sequence iz unbreken, i.e.; to exclude factors
or events during the past year that could have caused West German policy
toward diversion to change (e.g.., change in political leadership, change in

perceived defense regquirements).

Another pattern of causal influence arises when the significance of an item of
evidence depends in part on an analysis of the motivations and beliefs of
other people. In such cases, the causal model that the anslyst works with may
inelude a "second-order™ model that depicts a chain of reasoning abouf causal
relationships in the heads of those other people. Making such second-order
models explicit and judging the evidence of lack of evidence for their com-
ponents may be an effective antidote to the danger of "mirror-imaging" (i.e.
supposing that others act on the same beliefs and values that we doj). For
example, West Germany's economic dependence on nuclear power (evidence item B)
leads to a conclusion of {no diversion] via a chain of "mental events"
{attributed conjectually to the West Cermans}:
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West - Prediet = Prediet = Prediet -+ Coneclude

Germans Exposure Economic Undesirable Benefits of

Hypothesize of Diversion Sanctions, Economic Diversion

Diversion RBeprisals Consequences Do Het Outweigh
Costs

The walidity of the argument based on evidence item & depends on premises that
ensure that these links remain unbroken: that the West Germans believe ex-
posure of a diversion would be likely, that they believe economic ssnctions or
reprisals would be adopted by other countries, that they believe undesirable
econcmlic consequences would in faect follow, and that they find these con-

sequences unacceptable even in light of poszsible benefits from diversion.

This chain, however, does not yet form a link between the analyst's belief
that West Germany is economically dependent on nuclear power and the conclu-
gion of [(no diversion]. Thus, it does not yet capture all the factors that
bear oni the validity of this inference. To do se, it must be elaborated in
twe ways, First, it must provide a mere detailed account of the West German
decizion making process, linking it to West Germany's level of economic depen-
dence on nuclear power. Note that (if this argument is wvalid) the analysc's
beliefs in regard to West Germany's economle dependence and the West Germans’
beliefs regarding their own economie dependence share a common causa: the
ground truth economic situation; and the West Germans' beliefs on this matter
will imfluence their prediction of the economic impact of sanctions and
reprissls. Thus, we get:
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Predict Predict

West CGermans Predict Economle Undesirable
Hypothesize -+ Exposure -+ Sanctions, = Economic e L
Diversion of Diversion Reprisals Consequences

¥, German Hest West German

Data on - Cerman - Conclusion of
Vest GCerman Analysls Economic
,f##' Economy of Data Dependence
on Huclear Power

West German
Economic
Dependence

on Huclear Power

\\\‘ (U.8.) (U.5.)

Data on {(U.8.% Conclusion of
West Germsan -+ Analyais -+ Economic
Economy of Data Dependence

on Muclear Power

The bottom branch of this network reflects the analyst's own reasoning (or
reasoning which he accepts) regarding West Germany's economic dependence on
nuclear power; the middle branch reflects hypothesized reasoning by West Ger-
mans on the same subject., Adding these two branches makes clear that the
validity of the argument based on evidence item & depends on the correctness
of the amalyst's inference that West Germany is dependent on nuclear power,

and on the swareness of the West Germans themselwves that this is true.

Finally, these mental events can be embedded in a first-order causal model:

West = Initiate = [...reasening -+ Implement + Mo Diwversion
Germans Foliey Debata as ghove. .. ] Results of

Fropose About Diversion Folicy Debate

Diversion

bringing out the dependence of the argument on a crucial additional set of
premises: that the decision on diversion would in fact be preceded by and
based on some sort of high-lewvel policy debate (and mot msde, for example, by
lower lewel, independently acting personnel).
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It iz worth polnting out that, in interesting problems at least, no conclusion
ig really "proven®, and any list of premises must alwavs be regarded as
provisional and incomplets. The analyst can choose the level of detail to
which he earries the examination of any particular argument, and important
contingencies may initially be overlooked or dismissed as improbable (e.g..
could the IAEA report have been mistranslated?). HNevertheless, 1t Is the ef-
fort to construct casually based arguments of this sort which clarifies the
bagis for belief, leads to the discovery of hidden premises or assumptlons,
and provides a framework for revision of beliefs and assumptions when they

lead to eonflict,

3.4 PBeliefs and Assugptions

The analyst may have evidence or knowledge regarding some of-the-premises of
an argument, but it is unlikely that he will have evidence or knowledge
regarding all of them. Premises about which the analyst 1s ignorant may
nevertheless play & erucilal rele both in his understanding of and reasonlng
about the problem, and in decisions regarding the collection of further infor-
mation. To the degree that knowledge is lacking, therefore, SED permits the
apalyst to make assumptions and to explore the implications of those assump-
tiens for the conclusions of the argument.

SED may operate either in a non-vumerical mode or in a numerical mode, In the
firse, belief in a premise iz all or none. If neither a premisze nor its nega-
tion iz believed, however, the premise (or its negation) may be assumed,

In the numerical mode, on the other hand, belief iz graded, i.e., belief in a
premise may fall anywhere in the interval between 0 and 1. To the extent that
belief in a premise and its negation fail te sum te 1, the analyst may make a
decizion regarding the allocation of the remaining uncommitted belief. BSuch a
decigion constitutes an assumption. Hote that the non-numerical mode

iz a special case of the numerical mode, in which all belief assignments and
assumptions are either 0 or 1. However, use of the not-pumerical mode (a) may
be a source of valuable insight into the logical structure of an argument, and
{(b) may be preferred by analysts in problems where there is a high degree of
confldence, or when, for whatever reason, they do not desire to use numerical
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MmeEAFULEs ,

Dur exposition will begin with the non-numerical mode, for reasons akin to
fa). Exploration of the basic loglical forms that arguments take will clarify
the functions that numbers perform and their meaning, MHNumbers will be intro-
duced quite naturally as guantifications of the validity of the leglecal strue-
tures created in the non-numerical mode, Bumbers represent the chance that

(non-pumerical) arguments are walid.

An analyst may input both his beliefs and his choice of assumptions in the
context of the display shown im Figure 1. In the non-numerical mode, the
analyst indicates whether he believes a proposition te be false or true by
pointing with the mouse at "Believe Ho"™ or "Believe Yes" respectively and
elicking. If neither is believed with confidence, he may indicate his assump-
tion that the proposition iz false or true by pointing with the mouse at
"Agsume Ho" or "Assume Yes" respectively and clicking.

Note that the premises im an argument can be expressed in either a poaitive or

a negative manner, depending on the preference of the analyst, Thua, the fol-

lowing two formulations are eguivalent to one another:

Statistical inadequacy
Believe Ko _0 Beliewve Yes _0

Assume No 1 Azgume Yes #]
f clst

EBelieve HNo 1] Belleve Yeg 0

Aseume Mo o Azgume Yeg 1

Both formulations (in the context of the argument in Figure 1) represent the
premise that statistical techniques are adequate; in both cases, the premise
1g assumed to be true, He referred to "Statistical inadequacy™ (in the first

formulation) as a "rebuttal,” since acceptance of statistical inadequacy would
inwvalidate the argument.



3.5 Many Argpuments From Ope

In constructing a core arpgument, the analyst specifies a conclusion together
with a set of premises, i.e., a set of propositions (such as "Statiscical
inadequacy”) with assoclated credibility status (Pelleve Yes, Belleve Mo, As-
sume Yes, or Assume MNo), These premlses are then regarded by 5ED as a core

argument which prowves the specified conclusion,

In additiom te the core argument, S5ED requests that the analyst specify the
Impact on the conclusion of changing the credibility status of each premise.
This provides an economical, lmplicit specification of a large number of al-
ternative arguments, each corresponding te a different change [or combination
of changes) in the premises. In other words, given the core argument and the
impact of changing any premise, SED can automatically comstruct a variety of
cther arguments based on the same item of evidence, but leading to different
conclusions. To do so, SED utilizes presuppositions about the function of
each premise in the causal chain linking conclusions and evidence. This
capability enables the analyst to explore freely the implications of changes
in his beliefs and assumptions; in addicion, it permits SED to make recommen-
dations regarding revision of assumptions and beliefs, and the collection of
additional Informatien, te resalve confliet,

3.5.1 The impact of pepsting & premise. BSED provides a simple method of em-
coding the potential impact of changing a belief or assumption. The impsct of
rejecting a premise (in the non-numerical moda) is always: (i)} to eliminate
support for one subset of hypotheses, and (ii) te shiftc that support onto some
other subset of hypotheses. BSuch impact may be of cwo kinds, depending on
whether the effeet iz on the precision or the direction of the core argument,

Impact on preciszsion., Rej]ection of a premize may remove, dilute, or enhance
the bearing of the evidence on the hypothesez, Instances of the first type
oceur, for example, if 1a4EA inspectors are incumﬁ&tent chservers, if the
cample size or statistical techniques applied to the dats are inadeguate to
detect diversions, or 1f the TAEA alwavs reports "no diversion" even if there

is evidence to the contrary. In none of these cases does it follow that a
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diversion of nuclear material did take place. Rather, the IAEA report
(evidence item 2) is deprived of evidential significance; the subset of
hypotheses which it now proves is the universal set, i.e., the set consisting
of all three elementary hypotheses. In short, the nmew argument tells us noth-
ing regarding whether or not & diversion took place. This type of impact is
indicated in the following way:

Diversion for West Diversion to
He Diversion German Bomb Other Country
u
+ + +

The first row represents the subset of hypotheses which loses support If the
premise turns out to be false. The "0" means that support for the subset (no
diversion] would be invalidated {(reduced to 0% of its former wvalue) if this
rebuttal turned out to be true. The second row indicates the subset to which
support is shifted. In this case, the belief deducted from (no diversion) is
to be added to the subset consisting of all three hypotheses,

Secondly, rejection of a premise may decrease the preclsion of an argument
without totally inmvalidating lc, For simplicity of exposition and display, we
have recognized only two possibllicies with regard to each premise: accept-
snce or rejection. It may be desirable, however, to provide a more flexible
representation of the negation of a premise. For example, we may wish to dis-
tinguish sewveral levels of competence of IAEA inspectors: ability te detect
small amounts of diverted material, ability to detect large amounts of
diverted material, and inability to detect evem gquite large quantities of
diverted material. The core argument assumes the first (high inspecter
competence); mnegation of that premise, however, may lead to adoption of
either of the other possibilities (moderate competence, low competence). Sup-
pose further that building s West German bomb would entail diversion of large
quantities of material, while aiding anocther country might invelwve diversion
of significantly smaller amounts (since that country might have other sources
of material in addition to West Germamy). If then, the analyst were to relect
the premise that JAEA inspectors are highly competent observers, and adopt in-
stead the idea that they are moderately competent, support would be shifred
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from (no diversion] to {no diversion, diversionm te other country}. This im-

pact is represented as follows:

Ko Diversion for Diversion to
Diversion West German Bomb Other Country

0

+ +

The new argument (based on moderate competence of the inspectors) still has
some force: it excludes the possibility of diversion for building a West Ger-
man bomb, although Lt no longer excludes diversion to another country.

Finally, rejection of a precisien premise can emhance the force of an argu-
ment. In the Flgure 1 core argument, the analyst chose to make assumptions
that msximized the precision of the conclusion (viz., he assumed that IAEA in-
spectors were competent observers, that statistical methods were adeguate, and
that the IAEA reported results appropriately). Assumptions of this sort are
made constantly and are often necessary if anything at all is to be concluded
from the data. Hevertheless, on other occasions Cthe analyst may wish to
adopt worst case assumptions, at least initially. For example, informatien
from a new, and as yet untested, source may be treated with ausp{:inn untll
the source has proven to be reliable; or the analyst may wish to ses how far
he can get without utilizing certain data sources at all. Subsequent rejec-

tion of these assumptions will imcresse, rather than decrease, the precision

of the conclusion.

For example, the analyst might construct a core argument with the following
premise: IAEA statistical methods can only discriminste large smounts

of diverted material. The conclusion of the new core argument, is [no diver-
sion, diversion to other country). The impact of rejecting this premise, and
adopting the view that IAEA statistical methods are highly discriminating, in-
creases the precision of the conclusion by shifting support to (no diversion}.
The analyst may represent such impact as follows:

Diversion for Diver=zion to
Ho Diversion West German Bomb Other Country
0 0
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In sum, 5ED permits core arguments to be constructed at any initial level of
precision. ERejection of a premise may then change the precision of a comclu-
sion by shifting support to any "nested" subset, i.e., a subset which comn-
tains, or is contained by, the originally supperted subset,

Impact en directien. The second type of impact which negation of a premise
may have is to change the direction of an argument, In this case, support is
shifted from one subset of hypotheses te a subset which is, at least partly,
inconsistent with the eriginal subset. Such a change in direction might occur

when the negation of a premise means that an observer, sensor, or a mode of
analysis has a built-in bias.

For example, the validity of the argument based on the TAEA report deoes net
depend merely on the ability of the inspection and analysls processes to
detect diversions of material., It also depends on the correct interpretation
and non-deceptive reperting of what is detected. Thus, the analyst includes
a8 A premise in the core argument, that TAEA persomnel are not systematically
biasing results in the direction of mo diversiomn. If this premise were known
or assumed to be false, then the IAEA report might say "no diversion®™ when the
relevant data indicsated that small smounts of diversion had taken place; and
it might say that small quantities of material had been diverted when the data
indicated that diversion had been substantial. This impact of negating the
premise can be represented as follows:

Diversion for Diversion to
Fo Diversion West German Bomb Dther Country
] +
+ 0

The negation of this premise does not constitute an independent arpument in
favor of [(diversion for West German bomb)] or [(diversion to other country);
rather, it shifts the conclusion in & way which is conditicpal on the initial
conclusion. Built-in biases thus depend on the core arpument for thelr
aeffect: they "deflect" it in the direction of a new conclusion. Note that

the newly supported subset neither contains mor is contained by the originally
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supported subset. The impact of negating the premise is thus on the direction
of the argument, not its precision. Automated sensors and analytical or
statistical technigues, as well as human sources, may produce systematically

erroneous conclusions, hence, are susceptible to biases of this type.

Independent blases. In other cases, by contrast, the negation of a premise -
in addition te its effect on the precision or direction of the core argument -
iz in itself an argument for a different conclusion. This new conclusion is
independent of the conclusion that otherwise would have followed from the core
argument. For example (Figure 1), suppose it is learned that there was
deliberate concealment of certain nuclear plant activities from the TAEA im-
spectors, providing opportunity for diversion of small gquantities of material.
In that case, the core argument based on the IAEA report is rendered less
precise, i.e., support 1s shifted from i(no diversion) te the subset [no diver-~
sion, diversion to other country). An additionsl result, however, iz a new
argument which independently supports the claim that diversion did take place,
since diversion is a highly plausible explanation of the efforts at conceal-
ment, The double impact of rejecting the premise of no concealment is repre-
sented in the following way:

Diversion for West Diversion to
Mo Diversion German Bomb Other Country
]
+ +
I + ¥

The revised core argument now points to {no diversion, diversion to other
country}; and a separate argument (with a single premise: that concealment
occurred) is ereated which peoints to {diversion for West German bomb, diver-
sion to other country]. The “1I" associated with the third row means that the
new arpument for diversion based on concealment is Independent, hence, does
not depend on the conclusion of the core argument,

The negation of a premise in an argument may sometimes provide independent
support for an alternative conclusion only in conjunction with some additional
preconditions. For example, deliberste conceslment of nuclear plant ac-

tivities proves diversion only if there is no other motive for concealment,
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€.E., protecting secret technolegy, or reducing disruption of plant routine
caused by the presence of inspecters. If the analyst wishes to make these
preconditions explicit, he can do so in SED by creating an entire new argu-
ment, instead of using the single line sbbreviation (with "I") as just il-
lustrated. The conclusion of this new argument would be [(diverslon for West
German bomb, diversion to other countryl; its premises are that deliberate
concealment has taken place, that there is no motive to protect secret tech-

nolegy, and so forth.

3.5.2 Copbinstion of information withip sn srpument. What if more than one
premise is rejected, and the impact of negating each premise is support for =&

different subset of hypotheses? For exanple, the analyst may obtain evidence
both that there was statistical error and that activities were concealed from
IAEA inspectors. SED's ability to construct altermative arguments efficiently
and sutomatically depends on its ability to exploit insights about the struc-
ture of reasoning in problems of this kind. In principle, the number of al-
ternative arguments can grow exponentially with the mumber of premises (since
there are 2" combinations of acceptance and rejection of n premises). The
burden on the analyst of assessing a separate conclusion for all those com-
binations would be inordinate. Typically, however, there is an implicit pat-
cern of independence and dependence among premises and their negations which
considerably simplifies the assessment task., These patterns are based on
plausible assusptions about the causal chains that link evlidence and
hypotheses, and the manner in which they are replaced or modified through the
negation of different types of premises.

If & core argument has n premises, them the analyst using SED need only
specify n + 1 links between evidence and comclusions. The first link is the
core argument, which associates the truth of all the premises with the conclu-
sion of the core argument:

If py pPp & ... Py, then G,

where the premises py are propositions of any logical form (including
negations) and C, is a subset of hypotheses; the truth of all the premises lm-
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plies that the truth abeut the hypotheszez of Interest 1z contained in the sub-
set Eﬂ, {Later, we sghall generalize thiz formulation to include degrees of
belief in different :uhﬂﬂtudﬁﬁik%ﬁ;%i;ﬁ Tha other links asssocclate the nega-
tion of each premise with am operation which substitutes & specified subset 5;

in the core eonclusion by a specified alternative conclusion Cy:

If ~Pa then Gy Ci

1f “Pn then Sﬂ - En
Since any combination of premises could be negated simultanecusly, 2" - 1 pos-
gible alternative arguments are implied. The conclusion of any particular ar-
pument is computed automatically by SED according to a relatively simple set
of rules, The negation of a premise has a different effect depending on the
type of the premise, i.e., on whether it concerns precisinn. built-in bias, or

independent bias. ".;?" o
o “jELj;: 5¢¢£iuﬁ ,j:L‘ .

FPrecision premises. The simplest cage involves an argument in which only
precision premises have been negated. A causal chain linking different kinds
of evidence and different subsets of hypotheses will neot produce "tracking® of
hypotheses by evidence if any link in that chain is broken. Fegating a preci-
sion premise means that the discrimination addressed by the negated premise
cannet be made regardless of the strength of the rest of the argument. When
pore than cne precision premise is negated, the new conclusion s the enlarged
subset of hypotheses that includes all the conclusions of the different
negated premises, i.e., their set-theoretic union,

For example, suppose there is evidence that inspectors are moderately incom-
petent {(i.e., are unsble to discriminate small guantities of diverted material
that might be associated with aiding another country to build a bomb); and
also evidence that statistical techniques are seriocusly flawed {(i.e., unable

to discriminate even large quantities of diverted material). HNegation of the
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first premise means the argument can noe longer disceriminate [(ne diversion)
from [diversion te another countrv¥]; negation of the second premise means the
argument can ne longer discriminate {no diversion)] from either {diversion to
ancther country) or [diversion for West German bomb). HNegatlion of beth
premises results in suppert for the universal szet, which Includes all these
pessibilicies,

More formally, if Pp: P+ 8nd pg are precision premises that are negated, with
associated substitutions S, -+ G, 38, —+ G, and 55 + Cg5, the new conclusion is

the result of applying each substitution to the original cere conclusionm Cy
and taking the set-theoretic unlon:

If hPE&_PEI- &—PS and 52. Eﬁ,! 55 :cﬂ, then cu" ':ﬂ UEE u Eﬁ_u Gs..

Built-In Eias Premises. Matters are not quite so simple if built-in bias
premises are alse negated, resulting in changes of directionm in the argument.
In that case, it is necessary for the analyst to give somewhat more careful
consideration te the causal medel which underlies the argument,

The simplest case of a causal chain linking concluslon and evidence censists,
at least conceptually, of two "stages®: a first stage im which data imputs
are procesgsed, discriminated, and categorized, and & second stage in which in-
terpretations are asscciated with the results of the first stage and explicit
outputs generated. More complex chaeins can be built uwp by repeated seguences
of this soert: e.g., IAEA inspectors (1) make observations at nmuclear
facilities and {2) generate reports; then IAEA analysts {(1') process and
analyze the inspector’s reports and (2°) generate conclusions. This par-
titloning of events is, of course, somewhat arbitrary. HNevertheless, it
provides a simple framework for understanding the relactive roles of precision
and built-in blas premises and how they should be combined,

Frecision premlses concern stage 1, and bullc-in bias premises concern stage 2
of an evidential causal chaln, SED deals with multiple negated premizes by
working backward within a chain, taking each stage 1 - stage 2 segment in turn
and first removing the effects of any bullt-in blases (atage 2}, then comput-
ing the impact of prior failures to discriminate (stage 1). The result is a
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simple process of search for the possible ground truth situations that could
have given rise to the observed evidence.

For example, suppose that three premises have been negated in an expanded

variant of the IAEA example: & precision premise regarding statistieal error
and two bias premises regarding the process of reporting conclusions from the
statistical analysis. BSuppose the impact of negating one bias premise by, is

te shift support from {no diversion) to [diversion to other country):

Diversion for West Diversion te other
No Diversion German Bomb Country
0 *

[ Dveson b N cowrithey —3 Mo digssion

Looking at this in causal terms, the analyst knowe or wishes to assume that
IAEA persomnel, confromted with results that in fact prove [diversion to other
eountry}, will report (no diversion). Similarly, the impact of nmegating the
other bias premise b, is to shift suppert frem ine diversion} to [diversiom
for West German bombj:

Diversion for West Divergion to other
Ma Diversion Garman Boamb Country
O +

o [P
b i ek % Revaie

Here, the snslyst knows or assumes that if TAEA personnel are confronted with
data that in fact prove [diversion for West German bomb) they will report (no
diversion). Finally, suppose negation of the precision premise pp shifts sup-
port from [diversion to other country} to {no diversion, diversion to other
country}, and from {diversion for West German bomb} to [diversion for West

German bomb, diversiom to other countrvl:

Diversion for West Diversion to other
Ho Diversion German Bomb Country
0 |
+ +
o 3
+ +

y b : e
s, [ B0 wrlr ’;uﬁt} Mg vl =2 mwj«—,
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In causal terms, the analyst is supposing that data which in fact prove (nmo
diversion), as well as data which in fact prove (diversion to other country],
could lead to a stage 1 IAEA conclusion of (diversion to other country]; this
conclusion at stage 1, therefore, fails to discriminate between the two situa-
tions that could produce ft, Similarly, data which in faet prove (diversion
to other country], as well asz data that prove (diversion for West German
bomb}, could lead to a stage 1 IAEA conclusion of (diversion for West German
bomb ) .

What is the appropriate conclusion from the new argument resulting from the
negation of these three premises? Ancother way of asking this question is,
what are the possible "ground truth" situations that could have led to the
IAEA Teport of no diversion? The possible causal sequences implied by the
above megated premises are outlined as follows, where N = [no diversion]}, O =

[diversiom to other country}, and ¥ = [diversiom for West German bomb}:

Ground Stage Stage

Truth 1 2
(= IAEA report
of no diversion)

Hote that the arrows represent the direction of causality, while the inferenc-
ing process works in the reverse direction, moving from the "N" on the far
right (i.e., the IAEA report of [no diversiom}) to the possible original

ground truth situatioms om the far laft.

The negation of by tells us that the report of no diversion could have arisen
from results that prove {diversion to other country); the negation of b, tells

us that the report could also have arisen from results that prove {(diversiom
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for West German bemb). Correction for these two biases thus produces the set-
theoretic union, (diversion for West German bomb, diverszion te other country).
Finally, negation of py tells us that [dlverslen to other country] might have
arizen from data that prove either (diversion te other country} or (ne
diversion), and {diversion for West German bomb] might have arlsen from data
that prove elither (diversien for West German bomb) or [diverszion to other
country). Taking the set-thecretic union of these possibilities, we get the
universal set, {no diversien, diversion for West German bomb, diversion to
ether country}. The negation of these particular premises leaves an srpument
that tells us nothing about ground truth,

Arblerarily complex causal chalns can be handled by preclsely the same prin-
ciples. For example, the evidence and am event to be inferred or predicted
are often related to one another only by virtue of being causally related te
some commen third event. In assessing the possibility of current diversiom
based on a dated IAEA report of diversion in the past, both the evidence and
the current diversion have their causal origin in a hypothetical past decision
to divert material (Section 3.3). In that case, the search process begins at
the evidence and works backward te the cause (e.g., a past decision to
divert), just as in the IAEBA examsple. It then works forward from that cause
along the other causal chaln to the event to be inferred {(e.g., the present
diversion). At each step, lt transforms the current conclusion In acecordance
with any megated premises pertainimg to that step, and takes the union of the
result. The final conclusion of the argument iz the set of all possible
ground truth situations (in regard to the event of Interest) that are causally

consiztent with the evidence.

-Caugal chaing underlying evidential arguments may also imvolve parsallel causal
streams Hﬁiﬂh uéet- For example, in the argument based on West GCermany’s
economic dependence (Sectlon 3.3}, The West German prediction of undesirsble
economic consequences depends simultaneously on (a) the causal chain in which
the Wezt Germans infer that they are economically dependent on nuclear power,
and (b) the causal chaln In which they initlate s decieion-msking process,
predict exposure to diversion, and predict economic sanctions Iin response to
such exposure. Rejection of a premise in elther chaln may lead to a £inal

conclusion other than [no diversiom). Here the inference process operates on
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the two causal steams in parallel, and takes the union of possible conclusions

at the point where they meet.

Built-in bias premises impose a somewhat greater assessment task on the
analyst than an argument involving only precision premises, First, if mul-
tiple stage l-stage 2 segments are Included in a causal chain, the analyst
must provide a crude temporal ovdering of the segments, Secondly, 1f more
complex causal structures are Iinvolved, the analyst must indicate the location
of esach premise withim such & structure. Finally, the analyat must BESBess &
larger mumber of potential impacts of negating a given premise. Since correc-
tion of built-in biases changes the direction of the argument, the analyst
mist address the impact of negating premises on potential new conclusions of

this sorc, as well as on the original core conclusion.

Independent bias premises. The megation of independent bias premises is a
relatively simple case, since each negated independent bias premise represents
a new causal chain linking a specified conclusion to evidence {in addition to
any effects it has on the precision or direction of the core argument}). If
more than one independent bias premise is negated, each of the associated in-
dependent causal chains is wvalid. Since the origin of each chain must be the
pame ground truth situation (albelt processed and interpreted in very dif-
ferent ways), the new conclusion is the set-thesretic Intersection or common
element (if any) of the conclusions associated with the different negated

premises,

For example, suppose there is evidence that activities at nuclear facllicles
were concealed from some inspectors and also evidence that other inspectors
falsified their reports. The firet finding provides an independent argument
for {diversion for West German bomb, diversion to other country). Suppose the
evidence suggests that enly Iinspecters from country X falsified reports, Then
the second finding is an independent argument for {diversion to other
country}, i.e., diversion te country X, The only way that both new arguments
can be valid, and both econclusions true, is for the truth to lie in thelr co=-
mon element, [diversion to other countey).

More formally, 1f three independent bias premises were negated, py, py, and
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py. with ¢y, Cy, and G, as thelr assoclated conclusions, the new conclusion is
their intersection:

If ~P1 & -P3 & Py then C.‘I. ] {:3 n E?.

3.6 Combining Evidence From Different Srpuments

The display shown in Figure 2 helps the analyst appraise the significance of
the copbination of all 9 arguments which bear en the hypotheses of interest,
Each argument represents an independent causal claim linking its evidence to a
subset of hypotheses, since each argument is rooted In the same ground truth
gituation, The conclusion of the combined argument is simply the intersec-
tion, or the common component (if any), of the subsets of hypotheses that are
supperted by the individual items of evidence. For example, if argument 1
means that the truth is in the subset {no diversion), and argument & means the
truth is in the subset [no diversion, diversion to other country), then if
beth arguments are valid, the truth must be in the intersection, (no

diverzlion).

Under "Conclusiens " SED displays all the conclusions that leogically might be
supported by the available items of evidence. These possible conclusions im-
elude all the intersections of all the possible argument conclusions - wunder
all combinations of beliefs or assumptions regarding the premises of the argu-
ments. Thus, in this example, the possible conclusions from the given collec-
tion of evidence are: (no diversion], (ne diversion, diversion to octher
country} = not building a bomb, [diversion for West German bomb], [diversion

to other country], and {diversion for West Cerman bomb, diversiom to other
country} = diversion.

Aty conclusion that was actually supported by this combination of arguments
would be shown with belief = 1.0. In this example, of course, the intersec-
tion of the supported subsets of hypotheses is empty, since the items of

evidence support conflicting, or nmom-overlapping, subsets. This is shown by

the 0's corresponding to belief in the possible conclusions of the combined
argument.
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Figure 2: SED Display for Combining Multiple Arguments in
Non—Numerical Mode

BELIEVE HYPOTHESES
Mo Diversion for  Diversion
Diversion West German  to Other
VIEW Bomb Country
CONCLUSIONS
PRO CON
Ea i §1.2,3.89 7.8.9 0 =
- = = a 1,2,.3,4,5.6 0 *
-_— *4.5; E?.gI 112r3|ﬁ n *
- — — §7.91 1.2,3,8 0 * "
ARGUMENTS
—_—— 1. Signed treaty 1.0 ¥
- - - 2. |IAEA report 1.0 *
e e 3. Public stotements 1.0 *
— 4. US/NATO commitment 1.0 %
R — 5. Mo detection of focilities 1.0 *
—_—— — 6. Economic dependence 1.0 *
anpE e 7. Coverup report 1.0 #* *
ek B. USSR stotement 1.0 %
FER AP 8. West German complaints 1.0 % ¥
CONFLICTS
] (8}
S — $1.2,3.8} {7.8,91 ™ o
_—— 14.5) 8 L
- — — §1,2,3,6 a8
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Figure 2 in conjunction with the detalled displays for each separate argument
{such as Figure 1) functions as an "argument spreadshest™: changes in beliefs
or assumptions in any of the arguments are propagated through the conclusions
of those arguments to the conclusion of the combined argument. The analyst
can retrieve any of the individual argument displays by selecting and clicking
with the mouse on the appropriate line in the "VIEW" column. Alternatively,
he can make changes directly te the conclusions of an argument in Figure 2, to

examine the consequences of those changes for the combined conclusion,

3.7 Conflict of Evidence

Conflict in the non-numerical mede means that the user has contradictory
beliefs or assumptions., S5ED helps him resolve the conflict by examining the
aggumptions and bellefs that underlie the coenflict, revising them where ap-
propriate, or collecting further information. Support for this process of as-
sumption revieion and testing 1z provided in two ways, corresponding to two
rather different cognitive strategies:

Global Conflict Resolution. The analyst may hypothesize a candidate solutiom
and assess its overall acceptability, then go on, if he wishes, to hypothesize
ancther candidate solution, ete. In this case, SED helps the analyst work
backward frem the hypothesized conclusion, asking vhat total conmsistent en-
vironment of beliefs and assumptions would make that comclusion true, and what
changes in his or her beliefs would be required to establish such an envirom-

ment,

Local Conflict Resolution. On the other hand, SED may help the analyst decom-
pose the confliet into components, look directly at each source of conflict,
ask what changes Iin hils or her assumptions or bellefsz would eliminate that
particular prablem, and then go on to the next source of conflict,

3.7.1 Construction of consistent plavsible emvivommentsg. In order to estab-

lish a particular conclusion €, one or both of two actions may be necessary:

{1) 1if no arguments currently support conclusion €, at least one argument will
have to be revised by changing assumptions or beliefs so that it supperts G
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(2} if one or more arguments currently have conclusions that are inconsistent
with conelusion C, each of them will have to be revised so that they ne longer
conflict with C,

Assoclated with each possible conclusien in Figure 2, SED displays a "ledger"
of reasons pro and con. The numbers refer te currently wvalid arguments;
brackets represent an optional selection (or disjunctiom) of such arguments.
In order to establish a given conclusion with no conflict, there must be at
least one valid argument inm the PRO column and no valid arguments in the CON
colusn, Thus, the conclusion [mo diversion) would be justified if any one of
the arguments in the FRO column remain valid, f{.e., argument 1 or argument 2
or argument 3 or argument b; and if all the arguments in the CON columm (i.e.,
7. 8, and 9) become invalid. The conclusion that a diversion to another
country has taken place would be justified if elither argument & or argument 5
remains valid, and either argument 7 or argument & or argument 9 remains
valid, and all of the CON arguments 1, 2, 3, and 6 become invalid.

By choosing to VIEW the arguments referred to in this ledger, the analyst can
e¢xamine and evaluate the enviromnment of beliefs and/or assumptions that would
justify any of these conclusioms. As noted above, to derive the conclusion
(e diversion) from the awvailable evidence, the analyst would have te continus
te accept argument 1 or 2 or 3 or 6; to de that, in turn, reguires accepting
all the current premises im at least one of these arpuments. He would also
have to reject arguments 7, &, and 9; te do that, he would have to reject at
least one current premise in each of those arguments.

The analyst will receive more detailed support if he peints at and selects the
VIEW line corresponding to a particular conclusion. The resulting new display
will pinpoint the current assumptions that stand in the way of sccepting the
specified conclusion, In the present example, if the analyst indicates [no
diversion}, the display will show all the premises which are currently assumed
true in arguments 7, B, and 9, and indicate that at least one such premise in
each argument must be rejected, In some cases, ne change in assumptions will
be sufficient to establiszh a conclusion consistently; in such cases SED will
highlight the beliefs whose change would be required to justify the conclu-
sion.
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The analyst can thus gauge the plausiblilicy of {no diversion) by reviewlng the
ways 1t could be derived; by breaking those possible derivations dowm into
changes he would have to make in his current assumptions or beliefs; and
evaluating the plausibility or acceptability of the total set of changes.
Similarly, he can then examine the set of consistent envirenments that would
justify any of the other possible copclusions, and judge the plausibilicy of
the changes In assumptlons or beliefs which those environments demand,

SED thus helps the analyst reselve conflict by arriving at a full, coherent
story rather than simply performing isclated assessments of individusl

premises.

3.7.2 Attacking the causes of conflict directly. A second strategy is
precisely the opposite: it attempts to diagnose and cure various components of
the conflict separately. The conflict situation is broken down In three
stages: first, what conclusions are im conflict; second, what argumentz are in
support of the conflicting conclusions; and third, what beliefs and/or assump-
tions specifically cause the conflict among arguments. SED thus permits the
analyst to identify "culprits” one by one for revision, in order to resolve

the conflict.

For example, the "Conflicts" portion of the display in Figure 2 shows that the
following pairs of mutually exclusive conclusions are supported: (ine
diverslen) versus diversion), ([diversion for a West German bomb] versus {no
diversion, diversion to other country}), {(I(no diversion] versus {diversion for
a West German bomb})., It also shows the arguments which are pitted against
one another in each parcicular conflict; e.g., acceptance of anmy one of argu-
ments 1, 2, 3, and & in conjunction with any one of argusents 7, B, and 9
would lead te conflict between {{no diversion), diversionj.

By choosing to VIEW one of these categories of conflict, the analvst recelves
a display that pinpoints its underlying causes, i.e., the bellefs and assump-
tions whose change would eliminate that conflict. For example, to resclve the
([no diversion) versus diversion) conflict, the analyst must eicher (a) reject
at least one premise from each of argumenmts 1, 2, 3, and &, or {(b) reject at
least one premise from each of arpuments 7, &, and 9.
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Suppose the analyst discredits arguments 1, 2, 3 and 6. The third category of
conflict {{no diversion] wversus {diversion for a West CGerman bomb}) has now
alep been resolved, and will vanish from the Figure 2 display. The only
remaining conflict is {{diversion for a West German bomh] versus [no diver-
gion, diversion to other countyry)). The analyst may now choose to VIEW the
sources of this cenflict, and evaluate potentlial changes in his assumptions or
beliefs to resolve the remaining contradictions in hiz analvsis,

3.7.3 Testing assumptions. When an analyst iz ignorant regarding the truth
or falsity of a premise, he may nevertheless be sble to identify methods of
collecting information that would shed light on its status. Such methods cam
vary widely, and might include, for example, more detailed analysis of data
from technical sensors, utilizing more powerful statistical techniques, guery-
ing humsn sources, searching a database, or scanning the open literature. Al-
though in principle "more information iz always good,® in the real world the
decision to collect more information by any of these means is virtually always
associated with coste: e.g., a delayed product and, pessibly, loss of oppor-
tunities for action or pelicy. As a result, decisions may often have te be
made on the basis of incomplete information and assumptions.

Conflict among beliefs and assusptions is an important indication that the
cellection of mere information may be worthwhile, since conflict means that
some of those beliefs and assumptions must be mistaken. SED helps the analyst
keep track of his or her information collection and analysis options and makes
recopmendations when such options could significantly contribute to the reduc-
tion of conflice,

In BED the analyst may associate with each premise a test or set of tests,
f.e., information collection or analysis options that can shed Light on the
truth or falsity of that premise. Each test is assoclated in turn with a
measure of its cost {(in time, money, or some appropriate subjective measure)
and with a set of possible ocutcomes of the test. Finally, each outcome Is as-
sociated with support either for the premise or for its negation. For ex-
ample, in crder to learn whether or not IAEA inspecteors had been hampered in
carrying out their duties, the inspectors might be interviewed. The outcome
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of these interviews would either invelve testimony indicating interference or
testimony indicating no interference. The cost of the interviews could be

assessed as a weighted average of the time and money regquired to conduct them.

SED's recoemmendations regarding potential tests work differently depending on
the conflict resolution context, In the global mode, SED will indicate tests
that epuld lead to a consistent environment of beliefs for the user-specified
conclusion &. BSuch tests heve outcomes that, if obteined, would suppert a FRO

MWEM.‘ C [(if no PED argument is currently valid) and/or inwvalidate a
currently valid CON argusment. In the local mode, SED recommends tests that
could eliminate the category of conflict under consideration. BSuch tests have
outeomes that, 1if obtalned, would diseredit a currently accepted argument that
contradicts some other currently accepted argument,

In all cases, SED recommends tests in accordance with a utility measgure based
on both benefit and cost (see Appendix A). Benefit is defined in terms of
potential reduction in comflict. In the numerical mode, however, whera con-
fliet L5 all-or-none, this measure has little meaning: a test may be well
worth performing even though it cannot eliminate comflict entirely.
Prioritization among such tests becomes more meaningful when numerical degrees

of conflict are recognized,

If collection or enalysis of nmew information is not a feasible alternative,
the analyst can still reduce conflict by revising assumptioms. SED can make
recommendations to the analyst in this process of assumption management;
moreover, if desired, SED can automate part of that process. These functions
are based on two special types of test, called "query analyst® and "conflict,*”
respectively. The analyst is free to associate either of these tests with any
premise. In doing so, he indicates a desire that any assumptions made in
regard to that premise should be sensitive to consistency with other beliefs

and assumptions.

If the "query analyst" test has been assoclated with a premise, SED will lat
the analyst know when a change in assumption regarding that premise would help
establish a desired conclusion (in the global mode) or help eliminate a
speclfiec conflict (in the local mode). The "outcomes" of this test are, in
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affect, the decisions of the analyst. If the "conflict®™ test has been as-
sociated with a premise, SED carries out the revision eof assumptions automati-

cally.

Here, as in the case of testing more generally, meaningful prieritization of
recommendations and automatic procedures requires numerical measures, to gauge
the potential impact of changing assumptions en the degree of confliet,

3.8 ddi Humbers to S

The non-numerical mode of 5ED, as discussed above, can serve an analyst as a
source of valuable insight into the structure of a problem. It may also be of
use In econstructing an analysis, when the available evidence (or the willing-
ness to make assumptions) is sufficient to warrant all-or-nothing conclusions,
More often, however, ewvidence apnd the arguments constructed on thelr basziz are
inconclusive, and belief iz graded rather than all-or-none. Thus, the numeri-
cal mode of SED imtreduces the capability of assessing degrees of belief in
the premises of am argument (and their denisls), degrees of belief im conclu-
sions, and degrees of impact of denying premises. As a result, a single argu-
ment may simultanecusly suppert multiple hypotheses or subsets of hypotheses
to various degrees. A second result is that confliet among arguments also be-

comes & matter of degree,

Humerical measures may be added quite directly to the baszic logical structure
outlined above. A natural choice for that purpose are Shafer-Dempster belief
functions, since (a) they focus on the walidity of tha link betwsen evidenca
and conclusion (and permit guantification of the chance that an arpument
proves a conclusion), {(b) conclusions are represented as subsets of
hypotheses, (2) sultiple arguments are combined {(via Dempster’s rule) by com-
puting the chances for common compoments, of intersections, of their conclu-
sions, and {d) a natural measure of conflict is provided by the chance that

the intersection of conclusions is the empty-set.

While belief function measures will significantly enrich the inference struc-
tures presented thus far, there is, we believe, a recipreocal benefit. The

Shafer-Dempster calculus has been controversisl in part, at least, because of
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the difficulty of assessing and understanding the required measures, HMHore
generally, there is a sense that any quantitative approach will fail to match
pecple’s intuitive ways of reasoning sbout uncertainty. HNumerical measures,
we contend, take onm a greater cegree of clarity and naturalness when they are

associated with causally-based arguments of the sort we have described.

3.8.1 PBeliefs and assumptiops. A belief function is a measure of evidential
support that assigns bellef to subsers of hypotheses rather than (as in
Bayesian probability theory) to the hypotheses themselves, &As in probability
theory, however, each support m{:} 1z between 0 and 1, and the sum of suppert
for all the subsets must equal 1, The following table is an example of a
belief functiom for the hypotheses in our illustrative intelligence problem:

Ho Diversion for Diversion to
mi-) Bal(-) F1{-3 Diversion Waest German Dther Country

P *

3 .3 B *

.1 .1 B *

.1 .1 .6 *
O e .2 *

- L4 .9 *
2 .2 7 * #
1 1.0 1.0 * * #

Since there are three slementary hypotheses, there are 23.1=7 subsets of
hypotheses for which support must be assessed (the empty set receives no
support). m(-) represents the "basic probability assigmment™ or support
meéasure. Shafer interprets it as the chance that what the evidence means is
that the truth lies somewhere in the specified subset. In terms of our
causal model of inference, m{A) is the chance that A is the set of ground
truth situations causally linked to the evidence.

The function Bel(-) summarizes the implications of the m({-} for a given subset
of hypotheses. BeliA) is defined as the total support m{-) for all subsets of
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hypotheses contalned within A;

Bal{a) = ¥ m(B)
BcA

In terms of our model, Bel{i) is the chance that A contains the set of ground
truth situations causally linked te the evidence.

The plausibilicy function PL{-)} measures the degree to which the evidence

fails te exelude a glwven szubset. PL{A) Lz the total support for all subszets
that everlap with A:

PL(A) = T m(B) = 1 - Bal{not-A).
ArBeg

Thus, PL{A)} is the chance that A has at least some element in common with the
set of ground truth situations causally linked to the evidence.

Shafer’s calculus provides a natural basis for defining the notion of assump-
tien. To the extent that support iz assigned to subsets containing more thsan
one hypothesis, the evidence fails to discriminate among theose hypotheses.
Tracing a causal chain from evidence to conclusions (in the manner of Section
3.5}, we find branches where the correct causal path cannot be determined, and
multiple possible causal origins must be recognized. These sultiple pos-
gibilities define the scope for assumptions. In particular, an assumption is
the replacement, in part or whole, of a less precise conclusion by a more ex-
act conclusion that is contained by it. Put another way, an assumption iz a
deelsion to reallocate support assigned to a set of hypotheses (i.e., support

that is uncommitted in the respect to the mesbers of the szet) to one or more
of its subsets.

Suppose that the analyst has ressonably strong evidence (e.g., based on a
recent study of procedures at the facility) that no opportunities existed for
diverting materials during imspector absences. The analyst therefore asgesges
a belief of .7 in "Believe Ho" for the rebuttal, "diversion epportunities
during inspector absence." Suppose in addition that there iz no evidence sug-
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gesting the existence of such oppoertunities, so "Believe Yes"™ is assessed as
0. The remaining belief (.3) automatically goes to the universal set,
[diversion opportunities, no diversion opportunities), i.e., it represents a
30% chance that the available evidence proves nothing at all regarding such
opportunities.

Diversiopn Opportunities During Inspector Abgences

Believe Ko ¥ Beliave Yes (4]
Assume No -] Assume Yes

Vhen evidence is Insufficient to establish belief or disbelief in a premise,
the snalvst may make assumptlons. In this regavd, the numerical mode of SED
iz & natural extension of the nen-numerical mode. To the degree that the sum
of belief in & premise and its negation falls short of 1, the analyst is free
to make assumptions about the allecation of any portion of the remaining, un-
committed beliaf. For example, the analyst has a degree of belief of .7 that
ne opportunities occeurred for diversion during inspector sbsences. By setting
"Aesume No"™ at .5 for this premize, he can assign half of the remaining .3
belief to the proposition that no opportunities occcurred.

The advantage of specifying assumptions in terms of proportioms, rather than
absolute amounts, of uncommitted belief is that belief in premises may change
as new evidence is acquired, while the assumption policy of the analyst
remsins unchanged. The analyst can set "Assume Ho" at any proportiom p, and
"Assume Yes" at any proportion q, as long as the sum of p and q is less than
or equal to 1, Then proportion p of the uncommitted belief will be assigned
by assumption to the proposition that no diversion opportunities cccurred, and
proportion g of the uncommitted belief will be assigned by assumption to the
proposition that opportunities did oceur; any remaining propertiom, 1l-p-gq,
stays uncommitted,

3.8.2 A causal-mwodel-based strategy foy construeting numerical repre-
gentation. The belief function concerning diversion of materials was gquite
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complex (with 7 different subsets potentially receiving support), and would
undoubtedly be Aifficult even for an expert to assess directly, In SED, such
belief functions do not in fact have to be assessed. Instead, they may be
constructed automatically by SED from the user's qualitative, non-npumerical
judgments regarding causal relationships, together with some far simpler
nuserical judgments of belief in premises, In this strategy, the analyst
starcs with what 18, in effect, a non-numerical argument, 1.e., & set of fully
accepted premises and a definite econclusion, Each premise receives support
totaling 1.0 either by belief or by assumption or by & combination of beth.
The conclusion of the core argument is a single subset of hypotheses, with
support equal to 1, Similarly, the impact of rejecting each premise is
specified as the all-or-none replacement of one speclflied subset by another,
After the core argument has been specified, however, beliefs and assumptions
may be allocated in any manner between the premise and its negations (or
glmply remain uncommitted). A graded conclusion, in which multiple subsets of
hypothezes are assigned different numerical degrees of support, is then
derived automatically by SED,

For example, suppose the analyst begins by constructing the causally based
corve argument in Fipgure 1. Its concluslon assigns bellef of 1.0 toe (no
diverszion}. Then he assigns bellef of .2 te the clalm that there ils statlscl-
cal inadequacy in the apalysls (premise &). The result will be a new conclu-
gion in which belief of .8 is assigned to [no diversiom}, and belief of .2 is

assigned to the universal set,

Hoew suppose in addition that the analyst assigns belief of .3 te the claim
that there is biss in the interpretation of results (premise 7). Four dif-
ferent situations are now possible: all premises remainm true, only premize &
is false, only premise 7 1z false, and both premise 6 and 7 are false, The
techniques of Section 3.5 permit 5ED to determine what subset of hypotheses
would be causally linked to the evidence under each of these conditions. The
degree of support for each of those subsets is just the total support for all
comblnations of premises that have that subset as & conclusion.

The following table summarizes the example:
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Degree of Ho Diversion for Diverslion to

Support Diversion West German Bemb  Other Country

411 premises

Crue 5h *
Fremise &

false 14 * #* W
Premise 7

falge .24 *
Both premises

false 06 * * *

If all premises are true, the truth must be (no diversion}. The chance of
this is (1-.2)(1-.3) = .56, If only premise 6 iz false, support goes to the
universal set. The chance of this is (.2)(1-.3) = .14, Similarly, if only
premise 7 is false, support goes to {diversion to other country}, with chance
equal to (1-.2)(.3) = .24, Finally, if both premises are false, support goes
to the universal set, The chance of this is (.2){(.3) = ,06.

The result of adjusting belief in these two premises, therefore, is am alter-
native argusent that assigns .56 belief to (ne diversion), .24 belief to
{diversion to other country), and .1& + .06 = .20 belief to the universal set.

The attractive feature of this assessment strategy is that it provides an ex-
planation of the numerical suppert measures in the conclusion, in terms of the

chances that various premises in the core argument are false. These mumerical

measures are cnnsrrucffﬁff;athar than directly assessedy from a perspicucus
. ol

logical structur?{ The analyst delineates the basic causal structure of the

argument linking evidence and conclusion before he assesses any numbers,

3.8.3 4 ral mumeric framew . HWevertheless, 53ED alsc permits a

more flexible and gemeral mumerical representation of an argument. In this

second approach, the conclusion of the core arpument may invelve assignment of

3-37



degrees of support to more than one subset of hypotheses; and the conclusion
assoclated with rejecting a premise may alsoe invelve assignment of degrees of
suppert to more thanm one subset of hypotheses., In addicion, the impact of
rejecting & premise may ltszelf be graded, l.,e,, 1t may result in only partial
establishment of the conclusion asseoclated with 1t, In this strategy, like
the first, however, the analyst apecifies a core argument with a set of fully
accepted premises; the system will then sutomatically compute the effect of

altering those beliefs or assumptions on the degrees of support in the conclu-
sion.

This strategy 1z appropriate under two conditions:
- where a complete causal model, 1s impractiecsble or undesirable, and

- where & statistical model is itself part of the causal chain linking

evidence and conclusions.

To Lllustrate the first case, we consider argument &, based on the U.5. and
HATD commitment to defend West Germany Iin case of attack by Warsaw Fact na-
tions. BSuppose that the conclusion of that argument is allocation of .8 sup-
port to the subset [no diversion, diversiom to other country]l, and allocation
of the remsining .2 support to the universal set. This conclusion rests omn an
argument to the effect that there is no perceived need for West Germany to
build a bomb for itself. The argument rests on several premises: that the
West Germans believe the U.S5. would honor its commitments, that the West Ger-
mans believe that the U.5. response would be sufficient for their defense, and
that the West Germans are not expecting & cutoff in U.5. aid due to West Ger-

man political factors (e.g., rise of the Green Party in West Germany).

This argument does not provide sll-or-nome suppert for the conclusion that
West Germany is not building a bomb (even if all the premises wera true).
Hevertheless, this core argument may still be thought of in causal terms, as
reflecting premises thsat have not been made explicit. Such an implicit
premise, for example, might be that West CGermany does not have some reason to

build a bomb other than self-defense or deterrence against the Soviet bloe,
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g.g., for prestige or for its effect onm a conflict where U.5. and NATD commit-
ments do not apply. In this example, of course, such premises could be made
explicit and added to the core argument, thus permitting an all-or-nome con-
clusion, Nevertheless, it is not always desirable or even possible to
enumerate expliciely all the precondlcions of an argument; an argument can go
wrong In numercus ways that elcher cannot be antlclipated or which seem, In-
dividually, too improbable to Isolate for separate consideration, The ability
to assess direct support for multiple subsets (including the universsl set) in

the core argument permits the analyst to summarize judgmentally the effects of
such implicit preconditions.

Bejecelion of a premise in this argument may alse have a graded impact, for
gimilar reasens., For example, I1f the West Germang do net have confidence
that the United Scates will honor itz commitments, then they might perceive a
need te develop thelr own bomb; evidence to that effect would support
[diversion for West Cermsn bemb). It would mot, howewer, establish that comn-
clusion with certainty. The impact of rejecting this premise (that the U.S5.
will respond) could be represented by the analyst as follows:

Diversion for Diversion to
Mo Diversion West German bomb other country
B +

BEejecting the premlse that the U.5, would respond reduces support for {(no
diversion] to 60% of its former wvalue, and shifts the remaining support te
{diversion for West German bomb}. This graded impact can be understood as
standing in for causal factors that, for whatever reason, the analyst has
chosen not to make explicit. For example, to achieve 100% impact, it would be
necessary to know that West Germany did mot regard the threat of attack by
Warsaw Pact nations as megligible, and that West Germany judged that the

deterrent value of possessing its own muclear capability was significant.

We have illustrated the use of the general numerical approach as an abbrevia-
tion for a more complete causal model, Its second functiom, however, is to

represent arguments that appear to be inherently statistical. For example,
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historical data may suggest that the incidence of war iz 20% when diplomatic
exchanges of a certain type and freguency occur between two countries. Sup-
pose then that exchanges of this sort are subsequently observed in & par-
ticular case. The analyst may infer that the chance of war is 20%.

In effect, this strategy involwves adopting the fiction, or metaphor, that a
chance set-up ls part of the causal chain linking evidence and conclusions.
In this example, the chance set-up is a common cause both of the exchanges be-

tween the nations and (potentially) of the war between them;

War
-

Chance

sat-up
(F{war)=.2)
H

Intense, hoatile

diplomatic exchanges
.T

.T
Historical
Correlations

Premiszes in this argusment will concern all three of the branches in this
network: L.e., are these errors in the sampling or analysis of the historiecal
data? could the chserved diplomatic exchanges be accounted for in some other
way? and are there special conditions that would facilitate or hinder the in-
feiation of a war? The latter two questions concern, mere broadly, the issue
of whether the present situation is representative of the historical data,

To the degree that all premises are accepted, the conclusion will be a
"Bayeslan belief function,” in which .20 support iz assigned to [war} and 80
support te (po warj. Typically, however, careful evaluation will lead to the
rejection of at least some premises, e.g., circumstances will be identified
suggesting that the present situation is non-representative In certaln ways,
In such cases, the result will be a "discounted Bayesian belief funection,® in
which support is assigned to [war] and {no war] in the ratle .2/.3, but some

support is also assigned to the universal set, signifying the chance that the
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present argument is irrelevant. Approaching statistical inference in this way
{a) permits the analyst to go bevond a literal acceptance of frequency data,
and (b} allews him to Integrate the results of statistical analysts with non-
statistical processes of reasoning.

3.8.4 Exploring slterngtive representatioms., A concern in communicating in-
telligence results is to render them in as precise and unambiguous a fashion
as possible. A key feature of SED is that it permits analysts to explore a
set of altermative representations of the same argument, which differ among
themselves In degree of precislon and in degree of convergence on a single
conclusion. Greater precision or comvergence can be achleved at the cost of
making sssumptions. For example, by sssuming that no opportunities existed
for diversion of nuclear materials during inspector sbsences, the analyst pur-
chases increased precisiom: i.e., more support for [no diversion), as opposed
to support for the set {no diversion, diversiom to other countryl. By assum-
Ing that blases did tiot ocour in data amalysis, he purchases increased
convergence: i.e., exclusive support for (oo divergence}, as opposed to shar-
ing support between the sutuwally exclusive conclusions {no diversion) and
(diversion to other countryl. In assuming that inspectors were not hampered,
he obtalns both more precision and more convergence,

We would comtend that assumptions of this sort are inevitable in anmy
analysis--that is, in any analysis of a reasonsbly complex issue that arrives
at an inmtelligible conclusion. The importsnt thing is mot to avoid assump-
tions, but to keep careful, explicit account of the assumptions that are made,
to track their impact on the conclusions both of the particular argument im
vhich they arise and the combined argument based on all the evidence, te alert
the user in case of trouble, and to support careful revision of assumptions

vhen appropriate. SED is designed to support the analyst in this type of

problem solving.

An illuminating representation can be provided of the space of problem repre-
sentations which SED cam axplnraﬁi The two dimensions of the space are preci-
sion and convergence. Yager (#MIF-504) has proposed measures of these dimen-

sions for Dempster-Shafer belief functions.
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His measure of precisien 1is:
where my 1z the support assigned to subset i and ng is the number of

hypothezes which belomg to 1. P iz at a maximum {equal te 1) when sll support
ia assigned to elementary hypotheses, a.g.,

Diversion for Diversion to
Belief Ko Diversion Vest German Bomb Other Ceuntry
33 *
.33 *
.33 *

P is at & minisum {equal to 1/n) where m is the total number of elementary

hypotheses, when all support is assigned to the universal set.
Yager's measure of comvergence is:
m
C=IFl;1

where my 1s the support assligned to subset L and Fly; 1s the plausibility of
subget 1, The key to high comvergence iz that every subset that has amy sup-
port also have high plausibility, L.e., that there be no support going to sub-
gets that are Incompatible with it. Thus C is at a maximum {(equal to 1) when
all support 1z assigned to nested subsets of hypotheses (hence, Plj = | for
subsets § in the nested serles, and Pli = ) for all other subsets 1); e.g.,

Diversion for Diversion to
Beljief Ko Diversion West German Bomb Other Country
3 W
) % *
3 % o i
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Convergence is at a minimum (egual te l/n) when support 1ls divided evenly
emong the elementary hypotheses. In "Bayesian belief functions," when all
support is allocated to elementary hypotheses, C is a simple monotonic func-

tion of Shamnon's entropy measure.

Figure 3 combines these two dimensions in a space of problem representations,
and shows how assumptions canm help the analyst arrive at & desirable leocation
anywhere within that space. Bias assumptions typically move the repre-
sentation toward greater convergence; precision assumptions typically move the
representation te greater precision. The rejection of these assumptions, con-
versely, will typieally produce more imprecision and more divergence in the
conclusion of an argument. HNote that maximal impreclsion and maximal diwver-
gence are mutually excluszive, since azszipgning support to large subsets makes
it herd to assign support to many Inconsistent subsets.

A important side benefit of this framework is that it accommodates different
uncertainty calculi as special cases. Figure & shows that anuaiaﬂbfuzzy, and
deterministic models of uncertainty are all located in this space. Bayesian
models are maximally precise belief functions. FPuzzy models are maximally
convergent (i.e., nested) belief functions, Deterministic models are both
maximally precize and maximally convergent. If he wishes, the analyst can
construct & model of any of these types by making suitable assumptiocns. He
may them imvestigate the success of that representatiom in terms of the con-

flict it produces with other arguments and assumptions,

3.8.5 The ippact of rumbers. As we have seen, incorporation of numerical
measures into SED permits the analyst to represent gradations of belief and to
manipulate statistical hypotheses. Even more impertantly, hewever, it
provides the possibility of a mere flexible process of control over reasoning,
in which the relative importance of different arguments can be weighed and the
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Figure 3: A Space of Problem Representations
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Figure &: HMultiple Models of Uncertalinty

PRECISE IMPRECISE
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culpability of different n==umpt1¢ni and bellefs in conflict more ap-
propriately assessed, In this :¢ccgl. after briefly reviewing Dempster's
Bule, we review the role nf nuugtical measures in these functiens, A more
detailed description may be found in Appendix A.

Combination of arguments. Dempster's Rule as a mechanism for combining argu-
ments is a natural generalization of the approach in the non-numerical mode.
It assigns support to the intersections, or common components, of the conclu-
slens of the arguments being combined. 1f my(A) Ls the suppert given te A by
argument 1, and EE{A} ig the support given by argument 2, the support that
gshould be given to A by the two pileces of evidence ism:

1 ™2
Wy gl

1- } My (Ay WD (An)
Ay A= L1 28

The numerator here is the sum of the products of support for all pairs of sub-
sets Ay, A, whose intersection is precisely A. The dencminater is a normaliz-

ing factor which ensures that m,("} sums te 1, by eliminating support for im-
possible comblnations,

In causal terms, an argument supports a subset of hypotheses If 1t provides a
causal chain linking that subsget to the evidence, A given argument may sup-
pert more than one causal chain, 1f there ls uncertainty about premiszes, To
compare two such arguments, we consider all combinatienms of the causal chalins
from each argument. The meaning of each combination iz the intersection of
the subsets they support; and the chance of both of them being wvalid is the

product of the support those causal chalns recelve from their respective argu-

mente .

Contributien to a conclugion. In the "Conclusion" section of Figure 2,
reasong pro and con are provided for each poszsible conclusion. The mumericsl

mode makezs it possible to give a more sophisticated account of why & conclu-
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; mmmn#rJ
glon is believed. It displays a measure of the relative contribution of an

FRO argument to current belief im that conclusion. (The messure is thessum of

the productes for all n-tuplee of subsets which {a) have the specified conclu-

glen as their intersection and (b) would not have the relevant conclusion as

their intersection if the given arpument were mot inmcluded.) If the analyst

wishes to resolve conflict by esteblishing a comsistent enviromment for a par-
ticular conclusion, he or she can use this measure to avoid the discrediting

of arpuments that provide key support, remaining free to reject arguments

which provide only incldental support.

Degree of conflict. The numerical mode provides & matural measure of conflict
among arguments. This is 1 minus the normelization constant in Dempster's
Bule, f.e., the sum of the products for all subsets whose intersections are
empty. This measure is the probability of an impossible state of affairs
(i.e., nothing being true), given all our current beliefs and assumptions.

The higher it Is, therefore, the greater the pressure to modify some of those
beliefs and assumptions to reduce the conflict (just as in classical
hypothesis testing, if the probability of not obtalning the actually observed
sample is very high given the null hypothesis, we ctend te rejeet the null
hypothesis). In short, SED interprets the conflict measure as evidence of

mistaken beliefs and assumptions.

In SED, the user may set a thresheld on the conflict measure, indicating how
puch chance of error he s willing to telerate. SED uses this measure in
deciding when te initiate conflict resclution procedures -- {.e., recommending
tests, gquerying the user, or autematically revising assumptions,

Contribution to conflict. We saw that SED can provide a measure of the rela-
tive contributien of an argument to a concluslon. In preclsely the same way,
it can provide a measure of the contribution of an argument to conflict (since
conflict 1s "belief in the mall set®), The analyst may use this measure to
focus his or her attention on components of confllct where revision of beliefs
or assumptions may do the most good.

The benefit of testing or changing assumptions and beliefs. In conflict

resolution, SED may make recommendations regarding the collection or analysis

3-47



of further information. Such recommendations are based on an evaluation of
each test in terms of its costs and benefits. The numerical mode makes pos-
sible measures of benefit which represent the potential reduction in conflict
obtainable by performing that test.

3.9 Data Structures im SED

The models of uncertainty supported by 5ED may &ll be represented within the
constraints of the standard relational model of data (Appendix C). Here we
briefly describe a set of data structures that appear to be adequate for this
job. The convention we have sdopted is a wvariation of the "entity-
relationship™ diagrams introduced by Chen (1976). This provides a higher-
level characterization than standard relational schemas, and, as a result, a
cleaner conceptualization of the basic semantic relationships in the database,
However, there iz an immediate, unambiguous translation inte standard rela-

tional structures,

The convention of these diagrams is as follows. A box stands for an "entity
relation"; roughly, this is a data table with a single key field and an ar-
bitrary number of non-key fields which are referred to as "attributes." For
example, in Figure 5, & tseble concerning human sources of informationm might
use the name of the source as the key field {(i.e., a unique identifier for
each object or row in the table); it might also include such attributes (not
shown) as age, address, length of service, etc. aAttributes may be represented
in che diagram by cireles, which are commected by lines to the relations to
which they belong., Diamonds are "relationship relations®, l.e., data cables
with compound key fields, For example, a cable might have the name of the
gource &8 one component key and the number of & report as a second component
key. Then each row of the table concerns the combination of that source with
that report, Im the diagram, the component keye in a relationship relation
can be determimed by looking at the entity relations which are connected by
lines to the diamond. Small numbers next to those lines represent the seman-

tic mapping between the k&yi. For example, in Figure 3 the "1" next to the
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Source lime and the "n" next to the Reports line indicate that each source
will be paired with multiple reports in that relationship relation. In the
relationship relation invelving objects and properties, however, each object

may be paired with multiple properties, and each property with multiple ob-
jecta.

Figure 5 iz a minimal intelligence database: it permits the analyst to store
information sabout data and their sources, and also to represent hypotheses
(l.e., ohject-property combinations) together perhaps with some measure of
degres of bellef (see Appendix C). What it lacks iz any means for linking the
data and the hypotheses by means of evidential arguments.

Figure & provides an overview of the data structures introduced by SED for
this purpose. Diagramming in this way dramatizes the role that arguments play
in linking data {(reports) to hypotheses via premises.

A separate table stores information at the level of problems (e.g., "determine
whether West Germany diverted nuclear material®). Attributes here might in-
clude who is working on the problem, who requested the study, deadline for
solution, ete. A relationship relation keeps a record of all the arguments
that have been assoclated with each problem, Subsets of hypotheses are
derived from the domain database of hypotheses. Each argument/subset combinsa-
tion is associated with a degree of belief, i.e., the current support for that
hypothesis from that argument, Similarly, each problem/subset combinstion is
associated with a degree of belief, i.e., the combined support from all the
arguments associated with that problem. Each argument is associated with
premises, although the same premise may appear in mere than one argument.
Premises are associated with tests (to determine their truth or falsity), and
tests are associated with outcomes,

Figure 7 presents a somevhat richer picture of the attributes required for
processing information in SED. Thus, each argument may be characterized by a
conflict threshold (indicating how much conflict triggers wvarious conflict
resolution processes among the arguments associated with that problem) and a
responsibility threshold (indicating degree of contributien to the conflict
that is required before an assumption will be tested or rewvised).
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Argument/subset combinations need to be characterized not only by the current
belief, but by the bellef assessed In the core argument as well {ﬁtl‘ﬂ{ﬂ}}.
Each premise/argument combinatien s characterized by the location of the
premise in the causal chain assoclated with that arpument (1.e,, what Is the
preceding or "Father" premise), Premlses themselves are characterized by de-
grees of belief and assumption, independently of the arguments they enter
inte. A very high level relationship relation characterizes the impact of
negating each premise in each argument. This characterization includes pairs
of subsets, one of which is reduced in suppert and the other of which is
increased; the relationship relationm has attributes corresponding te the
degree of impact on each. Finally, tests are associated with costs and
benefice. And cutcomes of tests are associated with the degrees of belief in
the premice and its negation which they supperc.
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4.0 CONCLUSTIONS

A major goal of SED is to support the processes of reasoning and methods of
organizing data that are preferred and practiced by successful intelligence
analysts. It does so in a variety of ways:

. by emphasizing qualitative causal models of how evidence iz linked ]
to conclusions; I
™ by permitting the development of simplified problem repre- i
sentations through the adoption (and testing) of assumptions; a
. by providing an "evidential spreadsheet" in which the implications
of changes in beliefs and assumptions become readily apparent;
. by supperting an iterative process of argusent comstruction, in

which conflict is used as a cue to reexasine and revige
assumptions; and

- by supporting a strategy of hypothetical reasoning in which the
plausibility of an overall coherent "story™ can be assessed.

MNumerical measures, from this peoint of view, are quite incidental; they are
means to the end of facilitating an effective and natural process of reason-
ing. Indeed, B5ED minimizes numerical assessment and subordinates it to the
process of constructing and manipulating qualitative arguments,

& pecond major goal of 3ED, complementary to the first, i1s to capture what we
perceive to be the strengths of recent theoretical work on uncertainty,

without some of the weaknesses.

The underlying representation of uncertainty in 5ED is Shaferian. The uncer-
talpty caleulus is a modification of belief function caleulus which allows for
assumptions and a nen-monotonic backtracking capability., SED's belief func-
tions arise out of a highly differentiated knowledge structure, patterned
after Toulmin's model of argumentation, The underlying qualitative models
giving rvise to bellef functions, asscciated with specific types of premises

affecting their relifability, can be thought of as endorsements, In the style
of FPaul Cochen,

Because it incorporates both belief function theory (with Bayesian theory as a
special case) and possibllicy theory, SED can deal with uncertainty due teo
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chance, to incompleteness of evidence, and to imprecision. The existence of
numerical belief measures allows SED to overcome the inability of non-
numerical theories (such as Toulmin's model, the theory of endorsements, or
non-monotonice logle) te represent and manipulate gradations of uncertainty.
The incorporation of qualitative theories allows 5ED to take advantage of the
strengths of the gqualitative reasoning abllity of traditiomal AL eystems,

Although its reasoning processes derive from belief function theory, 5ED in-
corporates innovations that smeliorate some of the shortcomings of the
Shaferian theory. An important difficulty for Shafer’s theory is that it does
net allow reassessment of the reliability of a source based on what the source
says. SED allows assumptions about source rellability to be made; actual
source bestimony may then prompt reexamination of these assumptionsz, In the
ideal case, any actual reassessment of source crediblility iz based on addi-

tlonal evidence--the role of source testimony is as a trigger te test for that

evidence,

A second major diffieulty of belief function theory is the inability of
Dempster's Rule to handle cases where arguments are mot based on independent
evidence. In our experience, it is oftem reasonsble to model non-independence
as shared premises. Thus, SED provides an important feature that is lacking
in traditional Shaferian systems: namely, a capability for representing nom-
independence between evidential arguments.

A third property of belief function models, at least as they have appeared in
the literature thus far, iz "flatness." That is, application of Dempster's
Bule assumes &ll input bellef functions te be defined enm the same hypothesls
space. Thus, the theory appears not to support hierarchical inference,
However, the tools of conditional embedding, minimal extension, and mar-
Einalization allow the definition of & mechanism within Shaferian theory for
hierarchical inference. The details of the Shaferian hierarchical inference
medel are given in Appendix B.

A% noted above, the SED system bears an important relationship to Dovle's
(1979) non-monotonic logic. In non-monotonic logie, an AL rule-based svstem
is endowed with the capacity to make assumptions and draw conclusions based on

the assumptions. When the system encounters a contradiction, it responds by
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retracting an assumption to resolve the contradiction. Interest in Doyle's

system has grown because of its similarity to human ressoning processes.

SED endows an uncercainty calculus (the theory of belief functions) with a
non-monotonic reasoning capability. As such, it is & very powerful theory,
SED is endowed with a flexible self-reconciling capabllity that Incorporates
the strengths of non-monotenie logie. Yet SED eounterbalances the wesknesses
of non-mometonic logic by providing a measure of the strength of evidential

support and an explicit prioritizatiom for belief revision.

Within Doyle's system, an assumption is a statement that is believed without
procf. Assumptions are different from axioms (which are also believed without
proof) because, although the system believes assumptions, it remembers that
they are "only” assumptions, and drops them readily when it dlscovers they are
responsible for centradiectlions.

In S5ED, an assumption is defined as a rule for allocaring uncommitted bellef.
The SED system reascns with the "assumed” belief functions (those with uncom-
mitted belief allocated according to assumption), but it keeps track of the

original belief functions. When it encounters comflict, the SED system goes

through its assumptions, searching for tests to justify a resllocation of the
uncommitted belief.

In Doyle's system, the entities with which the system reasons are proposi=
tions, or statements. In SED, the fundamental objects are belief functions.
Hote that in SED one can assign belief 1 to a conclusion. This is equivalent
to a proposition (if evidence, thenm conclusion). Im this sense, S5ED is more
general than Doyle's system.

The S5ED model can be though of as & very general "executive™ for keeping track
of the process of building and testing an evidential model. As such, SED has
the potential to provide a formal theory for the (typically informal) process
of model building and testing. DeGroot (1982) has said that a good statis-
tician always reserves "a little pinch of probabilicy™ for the event that the
model 1s wrong. In general, a good scientist will examine the output of a
model, and, if the results are anomalous, will investigate altermative models.
Previous attempts to model the "little pinch of probability” as a Bavesian
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pinch have run inte grave difficulty. How much is a big enough pinch? What

is the space of alternste models, and how should one allocate the pinch among
them? In the typical situstion, the meodeler adopts a parsimonious model; al-
lowing even a small pinch of probability te arbitrary alternate models might

result in a very unparsimonious model being adopted because 1t fits the dats

exactly.

These problems disappear in the SED model. One need not weorry about how much
cf a pinch to allecate; one simply assigns initial plausibilicy of 1 teo the
current working model, Model diagnostics [e,g,, outliers) then play the role
of "triggers" to seasrch for alternate models, Indeed, alternate models may
not even have been developed initially; they may be generated as a response to
the existence of confliect.

0f course, the credibility factor model has its own problems, such as finding
a raticnale for how much conflict is "enough™ to trigger the search for alter-
nate models, Still, it provides a waluable and very general framework for
thesorizing about the evidential reasoning process.



APPERDIX A: MATHEMATICAL BASIS FOR THE SELF-EECONCILING EVIDENTIAL DATABASE

Premises form the basis for the non-monotonle aspect of the Self-Reconciling
Evidential Databasge, Thie iz so because premises may be assumed true except
to the degree that there is evidence for their negation. A problem in the ar-
gument (typleally conflict, although as we shall see, there can be other
problems) acts as & trigger to reexamine such assumptions and recommend fur-
ther infermation collection in a non-monotonic belief revision process.

A precision premise s a special case of a premise which when negated cypi-
cally acts to discount an argument (i1.e,, it weakens the srrength of the argu-
ment without changing its direction). We begin our examinatiom of the theory
by examining the simplest special case: a precision premise whose effect is

total diserediting of the asscciated belief function.

Special case I: Total diserediting, Conslder s belief function Balx over the
set of hypotheses X, The assoclated basic probability funetion My is a prob-
ability distribution over the power set of X, and determines the belief func-

tion 88 follows:

Bely(A) = ¥ {B), (1)
X o By

for sll subsets A of X,

Lat us suppose the existence of a premise p whose rejection would invalidate
the belief function Bely. In other words, the belisf function Baly applies
only when p is accepted. If p iz false, there is no information sbout the set
X. Mathematically, this can be expressed by extending the belisf function
Bely to the sat ExP, whers P - {p,p) ie the set indicating truth or falsity of
the premise p. Denote the extended belief function by Bel . Each focal ele-
ment A of Bely, is extended to the focal element (AxiplI(Xx(p]) of Bel,, with
the basle probability assignment my(A). The interpretation Ls that belief
-E[a} is assigned to the set A if p is true, but to X (the universal set) If p
iz false. Belief assigned to X refleccts the degree to which evidence does not
digeriminate among the hypotheses in X,
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Mow, suppose there is a belief function Belp over the set P, with correspond-
ing basic probability functiom mp. The function Belp represents belief in the
truth or falsity of the premise p. This function, too, is extended to the set
XxP, The new focal elements are Xx{p}, Xx(p} and XxP, with basic probability
assigrments IPEHE]}. mp{{pl), and mp(P}, respectively. (This is called the
minimal extension (Shafer, 1982}, and reflects the judgment that the evidence
on which Belp is based contains ne information about X.)

Assuming that the two functions Bely and Belp are based on independent
evidence, we may combine the extended belief functions using Dempster’s Rule.
The combined belief function, denoted by Bel,, has three types of focal ele-
ment. These focal elements are displayed in Table A-1. The first type of
focal element represents belief in focal elements A of Bely and [p)] of Belp
Thus, to the extent that the evidence supports p, belief is assigned to focal
elements of Bely. The second type of focal element represents belief in the
falsity of the premise p; since Bely would be invalidated if p is rejected,
all belief is assigned to X. The third tvpe of focal element represents
belief committed to neither p mor p. In words, these focal elements represent
belief in "A and p, or ¥ and not p."

Table A-1: Focal Elements for Combined Belief FPunction
{Total Discrediting)

Focal Element of Bel, Bagic Probability
Exemise true Axip) melAlmp{lp])
Eremise false Xx(p) mp( {P))
Eremise upknown Ax((p))u(¥x{p}) my (A)mp ()

Since we are interested in the premise P only insofar as it affects belief
about the hypotheses in X, the next step is to reduce Bel, to a mew belief
function over X. The standard Shaferian operation would be to form the mar-
ginal belief fumction. Since the second and third types of focal element are
consizstent with the truth of any hypotheslisz In X, the result of marginalizing
-8 to assign thelr bellef to the set X. That Is,



m(X) = mp((p]) + I myla)mp(P)
ACH

- mp((P)) + mp(P)
=1 - mp(lpl)

A focal element Ax{p} of the first type is consistent only with hypetheses in
4. Thus, marginalization results in basic probability

my(A) = myl{A)mplp))

asgigned to proper subsets of A, Thus, the marginsl belief function is a dis-
counted versiom of Balx. with discount rate § = l-mp{[pl} egual to the
pausibiley that the premise is false.

While this precedure is a correct application of belief functionm theory, it
does not accord well with the human expert's process of provisionally adopting
the belief funetion Bely, searching for discredicing facters only when
prompted by conflict with other evidence. Marginalization treats the case
where the truth of the premise is unknown as eguivalent to the case where it
is known to be false; i.e., it assigns all belief to the universal set X ex-
cept to the extent that there is positive belief in the truth of the premise
(in particular, when Belp is wvacuous, so0 is the marginal of Bel,).

In contrast, a human expert might adopt the belief fumction Bely except to the
extent that there is positive belief in the falsity of the premise. Mathe-
matically, this amounts to treating the third type of focal element in Table
A-1 as if it were the first type. Equivalently, we may think of the belief
function Belp as being provisionally replaced by a function which gives the
universal set P no weight, but assigns belief mp((pl)+mp(P) = F1{{p}) to the
focal element [p). In other words, adopting p a5 an assumption is eguivalent
to assligning uncommitted belief to p. The result for the target hypotheses X
i a discount rate & = mP{:E]} egqual to the belief committed directly to the
falsivy of the premise, p.

Thus, by making assumptions, the analyst may choose to adopt the belief fume-
tion Bely so long as there is mo direct evidence to the contrary. When com-
flict oceurs, 5ED helps the analyst in the process of examining and revising
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such assumptions, or In searching for evidence that would increase belief in
p. thereby causing the discount rate te increase and conflict to decrease,

This framework may be extended to two or more discrediting factors as follows.
Suppose there are n premises, py....,p,, such that the falsity of any one
would discredit the belief functien Bely. That is, conditiomal on pyAps
...Apy the belief function Bely applies, but conditienal on pyv...vp, the
vacuous belief funcetion applles,

Suppose belief functions Eall are defined over the Py = Ipi_ﬁi}, and that they
are judged to be based on independent evidence. Each Bel; can be extendesd
{using the minimal extension described above) to the preduct space Pyx...xP_.
Combining these by Dempster’'s Bule produces a buliaf function Belp over the
preduct space. Its focal elements are of the form Qx...x0Q,, where Q; is a

focal element of Bel;. Their basic probabilties are defined by mp(Q;x...xQ,)
= mq{Qq}-om (0 ).

Recall that the belief functiom Bely applies only when all premises hold;
otherwise, the vacuous belief function applies. Suppose, as above, that the
analyst wishes to assume the premises are true except to the extent they are
directly contradicted by the evidence, The result would againm be a discounted
belief function, but this time the discount rate would be equsal to the belief
committed directly to the falsity of at least ome of the p;. That is,

§ = Btl{EI?FEV---?Fn} = L-Pl{piapan:--Apg).

The following theorem demonstrates that § 1z defimed by:

1 - § =1 (1-§]. {2)
Theorem Consider n bellef functlens, Bel,,...,Bel concerning n premises
Ple---:Pp- Suppose each Bel; is extended te the product space Pyx--.xF,

{where ?i - lpi,Eih), and thesge belief functions are combined sccording to
Dempster's Rule into a belief function Bel. Then
n

Pl{PlﬁPE.ﬂ"'ﬂPﬂ} a [T Plil:Pi}'
i=1



Proof: The result i= clearly true for n = 1. Suppose it holds for m-1. Now,
the plausibility that all premises hold is the sum of the basic preobabilities
of all subsets intersecting (py.,'+-,pp) - that is, of all subsets consistent
with the truth of all the premises. That is,

PlippA+ +apy) = L m(@) = I m(Q)---m (Qy)
Py " PRJEQ P& Q4

= I [my(Qq)--my 1)) {mp {(pg ) )+m (P ))
PL= Q
i=i=n-l

= P1(pyA- - APy 1)PL ()

n
= I Pli{Fi}
i=1

S8ince 1-§ is defined to be equal te Fl{pya:--ap,) and 1-§; to be Pl{p;), Equa-
tion {2) follows,

A general theory of credibility factors. Thus far, the only conseguence of
rejecting & premize has been to digeredit a belief function, i1.e., te Increase
support for the universal set at the expense of an across-the-board reduction
of belief in all other sets. Rejecting a premise may, however, have other
effects; #.g., in changing the direction of am argument or causing support to
shift from one focal element to another.

As a prelude to introducing the general theory, let us reflect a bit more
closely on the structure of the sbove model. The model says that conditional
on the truth of premise p, belief function Bely applies; conditionsl on the
falsity of premise p, the wvacuous belief function applies. The combined
belief function Bel 1s formed via the condicienal embedding of these condi-
tional belief functions intoe the space ExP (conditional embedding is discussed
in detail in Appendix B).



In the general model, we postulate that the falsity of premise p leads to
belief fumction Bulﬁ. Our modal, in werds, is "if p is true, then Bely; if p
iz false, then Ealﬁ-' In the special case described above, Bnli is vacuous.

As before, we use conditional embedding to obtain a belief functiom on the
product space ¥xP. The focal elements are of the form {Ax{p))u(Bx{p)), where
A is a focal element of Bely and B is a focal element of Bulg. The cor-
responding basic probabilicy assigmment is mxth]mgth}.

As before, we Introduce & belief function BEIP over the space F, and again use
the minimsl extension to extend it to X«P. Combining by Dempster’'s rule
yields the combined belief function Bel,. Table A-2 gives the resulting focal
elements {compare with Teble A-1 abowe).

The focal elements of the marginal belief function are of two types: (i) a
focal element of elther Btlx or Etli and {1i) the intersection of a focal ele-
ment of Bely and a focal element of Etlﬁ. The basic probabllity of a set A l=

given by:

my(A) = sy (Admp({p))+ap(A)mp((P))+ L e (B)ag(Clmp(P)
BrC=4A

Teble A-2: General Credibility Facter Hodel

Focal Element of Bel, Basic Probgbility Assignment m,(.)
Premise true ax(pl my{A)mp(ip))
Premise false Bx(p) my (B)mp(1p))
Premise unknown (Ax(p))u(Bx(p}) my (A )mg (B)mp (B)

(Mote: A denotes a foecal element of Balz
B denotes a focal element of EBIE )]
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If we choose to assume the truth of the premise to the extent consistent with
our evidence, SED shifts all uncommitted bellef to p before marginaslizing.
Belief in focal element A is now given by my(A) -lxih}Plpi!P}}+lﬁiﬂlﬂalp{lF}}-

Special cage 2: Partial discrediting. It mey be the case that the rejectlieon
of premise would only partially diseredit a belief funetion. For example,
even if we were sure that IEAE inspectors are Incompetent, we may not wish to
completely discount their report; instead, we might wizh te discount the
belief function for no diversion based on that report by a discount rate §
(where A<l). This corresponds te the case where mﬁ iz a discounted version of
my. That is, -ﬁ{h} = (1-fimy(a) for all proper subsets A, and mE{H} = {1-
Blme (X} + 8.

In this case, the focal elements of the marginal belief funetion are the same
ag those of EulH. Belief for proper subsets 1z given by

myy(A) = mye(AYPLp({p)) + my(A)(1l-S)Balp(ipl) {3)
= my(A)[1-Belp(ip)) + (1-8)Belp(ip})]
=  myg(A)[1-pBely(ip1)].

Thus, the result is a discounted belief function, with discount rate egual to
the product of F and the belief in the falsicy of p. (Note that this is mach-
ematically equivalent to a model which postulates that conditional on p, there
1z belief 5 in the presence of some other factor which torfally discredits
Bely. Substantively, however, the partial discounting model often makes more
sense, )

Special Case 3: Discrediting subsets. Sometimes we do not wish to discredic
an entire argument; rather, we find that the presence of a discredicing factor
gilmply results in our being unable to distinguish two hypotheses we had
thought we could distinmguish.

In this case, the belief function Bulﬁ would be as illustrated in Figure A-3.
Inereasing belief in p then results in a proportionate decrease in belief in U
and H, with the decrease being added to belief im (U, H); and a proporcionate
decrease in belief in (A, U]} and (4 ,H), with the decrease being added to belief
in (A,U,H).



Basic Probability Assignment

Facal Element Conditienal om p Conditional om E

A my (A) my {A)

u meUJ 0

H iy (H) 0

AU my; (AU) 0

A H my (AH) 0

UH my (UH) my (1) +my (H) 4my (UH)
& U H nI{ﬁUH} mx{ﬁﬂj+mx{&H]+nx{AUH}

Figure A-3: Example of Subset Discrediting

Special case 4: Credicting It may be the case that we wish to make the
provisional assumption that an argument is unrelisble to some degree. In this
case, bellef in the falsity of a premise would serve te Iincrease our con-
fidence in the argument. We would then define the belief function ni{xj =0,
and mg(A) = my(4)/(l-mg(X}) for proper subsets A. That is, Belf(-) iz an un-

discounted version of Belx.

In this special case, increasing belief in the absense of the premise would
result in relative belief assignments for all proper subsets remaining the

same, but the mass on the universal set decreasing.

Again, there is no reason why the falsity of a premise should completely
remove uncommitted mass; we could have partial crediting in analogy to partial
discrediting. Similarly, we could credit just a subset, reducing m(A) and
allocating mass proportionately to subsets of A (where A is a proper subset of
X}).



The General Model: Mulrciple premizes. Agaln, the general model can be ex-
tended to the caszé of multiple premiszesz relating te an argument. Here,
though, there are complexities that did not arise in the case of simple dis-
crediting. Let us zay that the bellef function Bel:{ applies under premiszes 151
and py. Invalldating p; leads te a new bellef functien Btl%: imvalidating p,
leads to BEI%, Now, theough, what happens when both premises are invalidared?
The answer was simple in the case of total discredicing: if inmvalidacing
aither premise resulted in shifting all belief to the universal set X, then so
would imvalidating beth premises. But in the case of general belief functions

Bnl% and Bulﬁ the answer is not immediately obvious.

Let us step back to basic primciples. In our original belief functiom E-alx,
assigning support my(A) to the set A amounts to asserting, "the evidence un-
derlying Bely means A with probability mp(A)". Invalidating a premise under-
lying Bely would mean that some of the subsets we had thought the evidence
might mean In actuality mean something else.

Thus, the analyst might select any number of pairs (A,5,) of subsets and dis-
count rates, with the meaning, "reduce belief in A to (l-8§ )mg(A}". The
result will be a certain amount of prebability that has been "removed" from
subsets of X, (A default of §,= 0 means removing no mass.) The user chen
gspecifies & "recipient belief functiom" E&lf:{-} to which this belief is te be
allocated proportionately among its focal elements. Thus, the belief function
conditionsl on E is given by

mg(A) = (1-8,)my(a) + o mp(A), where A =] §,my(A)

The interpretation is that there is probability {l-ﬁﬂ}mx{.ﬁj that the evidence

means A and probability & that the evidence means the belief function I:E

How does this interpretation of the belief function Belﬁ help us? Let us con-
sider the case of two premises, p; and p,. For each A we have a discount rate
6y for pp and y, for p,. We alse have reciplent belief functions Ealﬁ for py
and Bely for p,.

As was the case for total discrediting, it seems reagsonable to reduce belief
in A to (1-5,)(1-vydm({A). This results in bellef

A=



o =1 - F(1-§,)(L-7,)m(A)
A

to be reallocated. How should this belief be reallocated?

We have evidence (i.e. Ei} indicating that belief should be reallocated ac-
cording to Balﬁ and evidence (i.e. Ezj indicating that belief should be real-
located according to Btli. The evidence for p. is assumed independent of the
evidence for p,; yet p; and p, themselves are not independent in thelr lmpact
on Bely, since they are part of the same causal chain. The natural actlion, Lf
the premises were independent in their impact, would be to reallecate accord-
ing to the ecrthogonal sum {i.e. apply Dempster's rule). However, instead of
taking intersections of subsets, as in Dempster's Rule, we take unioms, in ac-
cordance with the causal structure discussed in Section 3.5. Thus, define
Btlﬁ as arising from the componentwise union of BaLi and Bali. Then we have
four conditional belief functions as described in the second column of Table

A-4,
Copditioning Premises Conditional Basic Probabiliry Weight
of &
{PlnPg} leﬁj P11{P1}Plg{P2}
(P1.P9) (1-55)my(A) + aymi(a) Bal, (p1)Ply(py)
(P19} (L-yp)myg(A) + apmi(A) Ply (py)Baly(py)
(31.72) (L-8,) (L-7p)my(A) + amy(A)  Bely(py)Bely(py)
Tabla &A=&

Given independent belief functions over the premises, we combine chem by
Dempater’s Rule. If both premises are assumed valid to the extent warranted
by the evidence, the resulting belief function is a weighted sverage of the
four belief functions in the above table, with weights given by the third
column of Table A-4,

Ve may think of the {l-TA}{l-Eﬁ}mE{ﬁ} as the portion of Bulx which is unaf-
fected by the premises, and which should therefore be "protected® from com-
bination with respect to El and EE‘ That i=, Ei and Eﬁ constitute evidence as
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far as Eeli and Bglﬁ are concerned, but not for the "protected" portion of
EB].I.

Premizes affecting more than one belief funection. To this polnt, it has bean
assumed that premises affect only cme belief function. In general, this might
not be the case; for example, incompetence of IAEA inspectors might discredit

beliefs about reactor safety as well as materials diversion.

Let us begin by considering the simplest case: suppose we are combining twe
belief functions, Bely and Bel,, defined over the space X. Suppose that the
premlse p, If invalldated, would act te discount Bely by discount rate §; and
Bel, by dlscount rate §,. Suppose that there 1s bellef b in the falsicy of
premize p.

The combined belief function over X iz obtained as follows. First we combine
belief functions Eell and B¢12 by Dempster's Bule. It turns out that the com-
putations are glmpler if we carry them through without normalizing
(normalization would serve to force all final basic probabilities teo sum to
1}. The baslec preobabllity assigned to the set A before normalization Is glven

by

mya(A) = T my(Ay)mg(An). {4)
12 AyrAy—A 112 v

Thiz is an wmormalized versiom of the combined belief functiom conditional on
p To obtaln the combined belief function conditional on p, we combine the
dizcounted belief funecions nf and mg. Again before normalization, we sbtain

mS(A) = B (1-610(1-8p0my (A dma(An) + Sqmala) + Eomy(A) (5)
- {1—51'524-!5152}&12{&} 4+ Elﬂlgl:.ﬂ.} + ﬁiﬂl{ﬁ},

The final marginal belief assigmment is obtained by giving weight 1-b to (&)
and b to (3).
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{(Hote that (6) still represents beliefs before normalizing.)}

If instead we had discounted Bel; by discount rate bé, and Bel, by discount
rate béy (acting as if two independent premises were cperating, instead of a
single premise), we would replace §; in Equation (53) by bé; te obtain

Fy(A) = (1-béy-bEy+b2616,)m 5(A) + biymy(A) + bigmy (A). (7)

The only difference between (&) and (7) 18 that the term hElEI in (6} is re-
placed by the guadratic term hﬂﬁlﬁz in (7). This term becomes more important

as the "worst case" discount rates §, and 52 become closer to 1.

Thus, when the same premise affects different belief functions, we cannot dis-
count the belief functions Individually and then combine them. BRather, we

combine them with no discounting, combine them agaln with maximum discounting
{i1.e. assuming p is false), and form a weighted combination of the twe resul-

tant belief functioms.

Here we considered only a simple specisal case. In general, a given premise
might apply to different belief functions at different points In separate
lines of inference in a hierarchical structure, The same general principle of
combination applies: combine conditional on p, combine conditional on p, and
form a weighted combination of these two belief functions.

Initiation and prioritizastion of the search for information. The non-
monotonic confliet reselution procedure in SED i{s invoked when there is com-
flict between items of evidence being combined. In Dovle's (1979} non-
monotonle legie, conflict is an all or nothing proposition--1t ocecurs when
both a propesition and its negation have been proven. In SED, there are
gradations of conflict--two arguments confliet to the extent that they point
toward contradictory hypotheses, even though the system cannot "prove" either
hypothesgis for certaln. Thus, SED requires a measure of the degree of con-
flict between evidential arguments.

Fortunately, the Shaferian caleulus provides a natural measure of confliet,
When two or more belief functions are combined via Dempster’s Rule, suppert 1=
allecated te a hypothesis according to the extent rthat each individual belief
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function lends support to the hypothesis, To the extent that the bellef func-
tions support contradictory hypotheses, support is allocated to the nuall set,
and the resultant belief fumction iz then normalized so that belief in non-
null sets sums to 1. This mass assigned to the null set provides a natural
measure of the comflict between lines of reassoning. When belief functions

Eall, .++, Bel_ are combined, the weight of confller, denoted symbolically by

1]
Bo. is given by the formula

e = pineEona g LA Tolan), (8)

where m;(A;} is the basic prebability assignment of belief fumction i to the
Ser ﬂi.

When, during its process of combining evidence, SED encounters conflict
greater than a threshold t., the conflict resolution mechanism is imvoked.
This "trigger® threshold can be set in advance, or adjusted dynamically by the
user. Alternately, the user may reject the idea of a fixed thresheld, prefer-
ring toe examine the output of inferences and decide, in context, wvhether the

level of conflict is acceptabla.

The conflict resolution procedure 1z, in effect, a mechanise for reaching
within the arguments leading te each of the five belief functions in an at-
tempt to identify potential weasknesses in the arguments. When such weaknesses
are identified, the corresponding belief functions are discounted, leading to
reduction in conflict. As long as potential weaknesses can be identified, the
process of conflict resolution continues until confliet is reduced to below
E..
The first step of the conflict resolution procedure, the search for discredit-
ing factorg, is initlated when conflict exceeds the threcheld Ens and consists
of the following five stages,

I. Decide which discrediting factor for which belief functiom is the
provisional "culprit® and which test to perform om the culprit.
(This step iz the crux of the algerithm, and the selection eriteria,
based on a benefit/Scost tradeoff, are described in detail below.)
If no culprit can be found, move to Steps 2 and 3 of the conflict
resolution procedure.
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ii. Perform the test and revise belief in the appropriate discrediting
factor,

iii. Compute a revised discount rate and apply it to the culprit belief
function, resulting in a new belief functionm.

iv. Recombine the belief functions according to Dempster’s Rule. The
result iz a new combined belief function, and a new measure of con-
fliet,

. If conflict is below t., stop. Otherwise, return te i.

The choice of which test to perform is based on a tradeoff between benefit and
cost. ERecall that each test hes essociated with it a cost of performance;
this cost is to be traded off ageinst benefit as measured by the potential for
conflict reduction (the benefit measure is discussed in detail below). There
are many possible tradeoff functions (e.g., & simple linear weighting of
benefit and cost, or choosing the test with the highest benefit per unit cost,
subject to & minimum benefit threshold). Alternatively, the system could
present & list of the most promising tests (i.e., ones clearing thresholds on
both bemefit and cost), letting the user trade off informally.

The benefit of performing a test is to be defined as its potential for con-
flict reduction. This can be separated inte two parts: the ispact of the
test result on the discount rate, and the impact of changing the discount rate
on confliet., Thus, a test is beneficial to the extent that it has potential
for increasing the discount rate, and to the extent that increasing the dis-
count rate reduces conflict. We discuss the impact of discounting on conflict
first.

The impact of changing the discount rate on conflict is measured by the par-
tial deriwvatiwve of conflict with respect toe the discount rate. Hathemati-
cally, the reduction in conflict whem a belief function is discoumted is &
linear function of the discount rate &§. To see this, rewrite Equation (B) as
follows.

po (D) = ) my (Aq d+- - -4m (A) + my (XD ¥ Mo (Ag) - - -m (A D,
Aqnie - A =@ Roe = - M= (9
.&1!‘:{

where we write p_(0) for the level of conflict when there is no discounting.
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Kow, suppose lall is discounted by the rate §. This means that nl{h) is re-
placed by (1-8)my(A) for all proper subsets A, and m; (X} is replaced by (l1-
E)my (X)+&. The new weight of conflict becomes

Bo(8) = (1-8) T  my{a)4--4m (A 4+ [(1-8)my(X)+6] J my (Ag) - - -m (AL),
Aqne - A =3 Bgli= « - A=
Ay rK

which can be rewritten {(combining terms) as

B E) = (1-8) % my(Aq)eeem (A )+ F Y malAn)e--m (Al)
e plAy) - mo (A, _m“_%“z =, (A

Aqfie - - MA_=3 Anle - (10}

= (1-8)p.(0) + B % Mo (Aq) -+ m (A )
e Agpis Srh a2 {4z B, Ay

This function is linear in the discount rate §.

The partial derivative of p  with respect to § is then

Mo m ap (0) + T mplhg)eom(ALD, (11)
T A P B

In words, this is the difference between the conflict when all (undisceounted)
bellef functions except Bel, are combined, and the confliet when all
(undiscounted) belief functions are combined, This derivative iz always nega-

tive.

The other aspect of benefit is the test's potential for increazing the dis-
count rate. The change in the discount rate will depend on which test result
occcure,. Beneflit must therefoere bhe defined in terms of the outcome of an un-

certain event.

Information about which test result will occur is expressed by a bellef func-
tion ever test results. This belief function will be wvacuous If there is no
such information, We may interpret the basic probabfility m{R) for a set B of
test results as the probabilicy that our evidence means the result will be in
E. Supposzse there were some number §(R) such that bellef im R justified belief
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in the discount rate §(R). We could then say our evidence justified belief in
the discount rate

f(t) = 3 S(R)m(R) (12)
for the test r,

Unfortunately, R will in general contain many test resulecs, each with & dif-
ferent discount rate, There is no unique way to define a discount rate im-
plied by belief in K.

We may, however, adopt ocme of several possible decision attitudes, Each of
the following decision attitudes has implications for how §(R) is chosen,

1. Pessimizsm., Belief in E should justify belief in a discount rate of
at least §(R). We therefore define §(R) as the minimm discount
rate associated with a result in R.

2. Optimism. Belief in R should i{mply a discount rate that could be as
high as §(R). Ve therefore define §(R) as the maximum dizcount rate
assoclated with a resule In R.

3. Conservatism. To the extent that there lg no Informatiom to distin-
guish them, all results should be treated equally. We therefore
defina §(R) as the average discount rate associated with a result in
B.

We are now ready to define the benefit measura. The test t tests for presence
of some discrediting factor associated with belief fumction Ball- The initisl
discount rate for Eeli i= Ei‘ The derivative of the conflict g with respect
te &y 1s p;. Assuming one of the above decislon attitudes, the discount rate
aggociated with test ¢t is §(t), as defined in Eguation (12). The benefit of
performing test t is rthen defined as

B{t) = - (E(t) - &5dpy. (13)

The negative sign occurs because conflict varies imversely with discount rate

(i.e., yi{U.}

The benefit of performing test t cam be thought of as the value of acquiring
the information contained in the test result. Thus, we can think of Equation
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(13) as an analogue to a Bayesian value of information computation. WNote that
the goal here is conflict reduction. We might argue that conflict reduction
is mot itself of intrinsic worth--we wish to reduce conflict in order to im-
prove the quality of inferences, which, in turn, might be used to make deci-
gions that affect an ultimate goal. Should we not then compute the value of
information in terms of this ultimate goal? We respond by noting that this
computation would be exceedingly complex. At any rate, the intelligence
analyst process does not always have full access te the policy decisions that
will be effected by A, Moreover, iz not the abovementioned "ultimate goal®
iteelf merely a subgoal of some still higher goal? Slicing the problem =o
that benefit is defined in terms of conflict reduction has the advantage of
modularity and simplicitcy.

A second comment is cthe absence of a unique way of measuring value of informa-
tion (or any other kind of expectation) in a Shaferian system, Each of the
decision attitudes described above corresponds to a rule for alloecating the
uncommitted belief so as to collapse the belief function Into a probabilitcy
disgtribution. Pessimisa corresponds to allocating all uncommitted mass to the
lowest discount rate consistent with the evidence. Optimism cerresponds te
allocating it to the highest rate. Conservatism corresponds te portioning un-

committed mass equally among all compatible test results.

Benefit is traded off against the cost y({t) of perferming test t. One pos-
sible tradeoff function is

u(t) = ] if b(t) < threshold - i+
(14)
bt} rit) atherwisa .

If a test is found for which w(t) > threshold utilicy then HMP performs the
one for which u{t) is maximized (i.e., for which bemefit per unit cost is
maximized). Otherwlize, no test meets eriterla., Thisz could happen because no
test has the potential for significant confliet reduction, because all tests
eost too much to perform, or because all possible tests have already been per-

formed.

The second phase in the conflict resolution procedure is to search feor addi-
tional information (other than diserediting facters). This could include
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testing for credibilicy factors whose presence would Increase (rather than
decrease) the strength of an argument or change lts overall direction. This
could also mean collecting unrelated evidence (as represented by a new belief
function te be combined with the other bellef functions),

To prioritize the search for information, & measure of the impact of the new
evidence is needed. In the case of credibility factors, this is &
straightforward extension of measuring the impact of discrediting factors
(since crediblility factors are generalized discrediting facters}. In the case
of independent evidence, we reguire a model of beliefs sbout the impact of the

evidence.

Typically, the result of this phase will be an incresse in conflict, but we
hope that the informatiom will help us discover which of the component argu-
ments is most likely to be flawed. Thus, cur criterion in evaluating the
value of the new information will be its ability to discriminate competing ar-

guments +

This could be operationslized by clustering the belief functions into groups,
such that within-group conflict is low and between-group conflict is high.
New information would be sought that was judged likely to provide information
that distinguished these groups. That is, we seek information that would be
expected to keep within group confliet low. We would expect {and therefore,

wa would not pemalize) & concommitant inmerease in between group conflict.

Information search, Thus far, we have consldered only conflict as a possible
trigger for the search for information sbout the presence of credibility fae-
tors. Other triggers are possible. One important situation concerns the case
when & finel belief function has tees much uncommitted mass. In other words,
we are unable on the basis of current evidence to arrive at a definite conclu-
sion. This event might trigger the search for crediting premises {or, perhaps
more commonly, for additiomal independent evidence). Similarly, corroboration
between two sources (i.e. more sgreement than we had expected) might trigger
the search for crediting factors (i.e. evidence that the arguments were more

raliable than we had thought}.
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Implications for bellef Ffunction framework. We noted in Section 2 that a
serious shortcoming of the Shaferian approach was the Inability to reassess
the quality of a line of evidential reasoning based on the content of the
evidence {i.e. on whether sources corroborate or contradlct each other), The
credibility factor model gives us the tools for overcoming this shortcoming.

Suppose we have two belief functions Bel, and Bels, which represent our cur-
rent assessment of the impact of two lines of argument. Suppose we judge that
one or both of them are affected by certain premises, but we have no evidence

that they are inwvalid.

New, suppose we combine Bel; and Bel, by Dempster's Rule, and suppose they are
in econfliect. The conflict triggers the search for evidence against underlying
premizes, Such evidence would, if found, dewngrade the assezsed relisbllity
of the arguments. Similarly, excess corroboratiom might trigger the search to
invalidate other premises to upgrade reliability.

A5 described here, the content of the evidemce (i.e. comflict or
corroboration) served only as 8 trigeser for the search for new evidence. It
iz this new evidence, and not the content of the original evidence, that
changes our estimate of the reliability of the sources, Thus, we malntain the
independence assumption upon which Dempster’s Rule is based.

There may be times when we camnmot find "hard" evidence against a premise, but
the existence of conflict leads us to question the reliability of our sources.
The everall discounting phase of conflict resolutiom provides a case in peint.
We assign a premise to sach argument, termed "conflict with other arguments
is met too great®. When there is significant conflict, belief in this premise
decreages and all arguments are discounted,

This procedure can be explained within the langusge of non-momotonic logic.
In a non-monotonic system, there are certaln default sssumptions (e.g. the
raliability of certain arguments). When confliet remders these become in-
operative, and the system typically specifies slternate assumptioms (in our
svstem, alternate allocations of uncommitted belief) to replace them. Thus,
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using confllet to revise bellefs (absent "hard" evidence) amounts to replacing
one default assumption about how to allecate belief in (p,p) {allocate all of

it to p) with another (allocate some of it to pl.
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AFPENDIX B: HIERARCHICAL INFERENCE IN A BELIEF FURCTION MODEL

B.1 A Single Chain of Evidence

It is often the case that an evidential argument proceeds in a series of
steps. For example, we recelve a report that leaves have been canceled for
Warsaw Pact troops. The report lends support to the hypothesis that leaves
have in fact been canceled, the degree of support depending on the credibility
of the source. The event that leaves have been canceled lends support te the
hypothesis that Warsaw Pact personnel are in a state of readiness, which, if
true, lends support to the hypothesis that Warsaw Paect troops have been mobi-
lizaed,

Shafer’s theory of belief functions prevides & natural representation of the
idea of evidential support. For example, the degree to which cancellation of
leaves supports personnel readiness would be represented by a belief function
over the possible degrees of readiness, conditional on the event that leaves
have been canceled. Such conditional belief functions can be specified at
each stage of the hierarchy. This section explains how to "chaln up™ the
hierarchy to obtain a belief function over the set of hypotheses &t the ter-
minal peint of the chain. Also considered are the assumptions underlying the
proceduraes,

Figure 1 illustrates a chain of argument linking observed evidence e (e.g.,
the report of leave cancellation) to a set H of hypotheses of Interest (e.g.,
whether or not Warsaw Pact troops have been mobilized). The evidence e and
hypotheses H are linked through a number of sets of intermediate hypotheses
(X, ¥, .o+, 2}, The idea of a chain iz formalized as follows. The evidential
link between consecutive sets in the chain is formalized by & conditicnal
belief function (e.g., BEl?iH in Figure 1). These conditional belief func-
tiens represent degrees of belief over Y implied by sach element x¢X. We also
have a bottom-level belief function Bely, representing the implicatien of the

evidence & for XK.

The validity of the methodology te follow depends on the fellowing assuap-

tions.
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1. The evidential link betwveen any two adjacent sets is completely
degeribed by the conditional belief functioms linking those two
sets,

2. The evidence e affects hypotheses further up in the chain only
through its impact on belief in X.

3. Each set of intermediaste hypotheses affects belief in hypotheses
further along in the chain only through its relation te the set of
hypotheses immediately following i,

&, All of the conditional belief functions sre based on Independent
evidence, and on evidence independent of that on which the lowest
level belief function, Balx1 is based.

To illustrate the methodology, we consider a chain of length 2 (i.e., X-¥).
We are given a belief function Bely over X, and, for each xeX, a conditional
belief function B‘lTlx over Y. Of interest are the implied beliefs for
hypotheses in Y.

Vhen belief functlens are bhased on independent evidence, Dempster’'s Bule is
the natural combination tocl. In crder to incorporate the Iink between the
sets X and ¥, we need to consider the product space ExXY. Our Eirst step is to
extend Bel, to XxY, using the minimal extension (meaning that eur evidence
about X tells us nothing directly about ¥). Each fecal element A of Bely is
extended to a new focal element AxY, with the same belief Belxihj and hasic
probability assignment m(A).

The second step is to embed the conditiomal belief functions inte the product
space. We start by creating a new belief functiom over ExY for each BEIle'
Each focal element B,CY is associated with a new focal element
{It}xﬁx}u{{iixfj of the new belief function. The new focal element is as-
signed belief BﬂlleinJ and basic probability m?ix{BK}. It represents belief
in B, if % is the case, but no information about ¥ otherwise.

Combining the new belief functions by Dempster’s Rule gives the conditiocnal
embedding (Shafer, 1982) of the Balle in Ex¥. For each cholece of focal ele-
ments B, of the Btlle. there is an associated focal elemznt of the condi-
tional embedding, givem by i { (1B, ). The basic probability corresponding
to this focal element is <% ITIR{BH},
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Third, the conditional embedding of BEITII in ¥Y¥X is combined via Dempster's
Rule with the extension of Ealx to ExY¥. The focal elements of the combined
belief function can be deseribed as follows. Feor each focal element & of BEIR
and each cholce of focal elements BR of the Bel?lx. there is a corresponding
focal element O = 1ghﬁlx}xﬂu}. Its basic probability assignment is the sum,
over all A and B, giving rise to the set C, of mx{ﬁ} xuﬁ mYIx{Bx}'

The final step is to marginalize over Y. The focal elements of thiz new
balief funnticn'{whith we shall call BelT} hawve the form D= IQAEH’ for =ome
choice of A and the 51. The basic probability assigmment is given by the sum,
over all A and B, giving rise te D, of m (A) Ty mYIE{Bx}‘ In other words,
belief in focal element D of the marginal belief function Bely is given by

(D) = =D mglA) T my|x(By). (1}

xeh

It is clear that the marginal bellef function Bely can now be used as imput to
the mext link up the chain. We can proceed in this manner up the chain until
a belief function over the final hypothesis space H is obtained,

In fact, under the assumptions given above, this iz the correct thing te de.
Consider a three-stage chain, ¥+Y-Z. The following theorem establishes the
equivalence of chaining up one step a8t 8 time and working in the full product
space Xx¥xZ,

Theorem: Consider the belief functions Bely, Bely|, (x¢X}, and Bely|, (ye¥).
Suppese the bellef functlen Belyy over Xx¥Y is formed as abeve, by

i, forming the minimal extensien of Bely Inte ExY;
b. forming the conditional embedding of :B-:Llr'E into XXY;

C. combining by Dempster’s Rule,

Then the following procedures vield equivalent marginal belief functions over
Z.
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Procedure 1 (chaining up):

d. form the marginal Bely of Belyy:

. form the minimal extenslon of BeIT inte YxZ;

L. form the conditional esbedding of BEIE'? into ¥YxZ;
combine by Dempster's Rule to form Belys:

h. form the marginal of Bely- over Z,

Procedure 2 (working over the product space):

d', form the minimal extension of Bele inte XxYW«Z;

e’ form the conditional embedding of BEIEIF into WxE;

£, form the minimal extension of the conditiopal embedding inte
W E

E". combine by Dempster’s Bule to form Belez;

h*. form the marginal of Belgys, over Z.

Froof: PFProcedure 1: As derived above (Equation (1)}, the belief functiom
Bely has, for each cheice of A, B :

Focal element D= x"'c'lh By
Balief nI(Dj = . mE{A.} _RIEIK "'E|:c":513'
xeA *

How, for each choice of focal elements 1":!Ir of Bulzl:=Ir and D of Bely (which, imn
turn, was derived from some choice of A, B, focal elements of Bely and
B#lYI:}. the marginal belief function Bely (formed by combining Bel, and

B‘lzly' and marginalizing) has

Focal element G = U l=':'lT - LU Fy
weld ®eh yeBo

(for zome particular choice of A, B:, FF}j
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Frocedure 2: Belief funcetlion Belyy has, for each choice of A, B, :

Focal element HE& fli}ﬂﬂx}
Balief By (A) Z . My | 5 (B ) s

where the sum is over all choices of B, yielding the same focal element (i.e.,
B, for xtA does not affect the focal element),

Extending this to Xx¥xZ gives

Foeal element i?& ({x)=BxL),

with the same belief. The conditional embedding of BEIEIF has, for each
chofice of F, focal elements of EElZ|y'

¥
Focal element ng f[?le?J

Extending to Xx¥xZ gives



Focal element yET {ENE?]IFI}.

with the same belief. HNow, combining by Dempater’s Rule requires intersecting
these, to yield

Focal element (C{x,¥)IxF_ ). (4

] ]
xeh yeBy ¥
Belief in this focal element is the sum of the products of belief in focal

elements that intersect to form the given focal element (4). The belief is

the sum of terms of the form
W) Ty m|xCx) T maly Py,

where the sum is owver all cholces of A, 51' FF giving rise to the focal ele-
ment (4). Finally, we marginalize, te get belief functionm Belz', with

Focal element G' = U U F
xeh yeB, ¥

Xi

where again the summation is over all &, B, F:IIr

G. Clearly these match the focal element (2) and belief (3) from Procedure 1,
so the two procedures are eguivalent,

giving rise to focal element

It is clear from this analysis that a single chain of evidential argument
would be evaluated by "chaining up," one level at a time, until the final out-
put, the implication of the evidence for the top-level hypothesis, is cb-
tained.

A.2 A Hierarchical Tree of Evidence

Figure 2 is an example of the kind of evidential structure commonly found in

problems of hierarchical inference, Given some evidence about the low-lewvel
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events (A, D, E) and some evidence relating events to those immediately above
them in the tree, the problem is to find the lmplicacions for the top-level
hypothesis sec H.

Following the ideas in the previous section, we express the impact of the
evidence on knowledge about low-level events as belief functions (Bel,, Belp,
Belg). The relation between adjacent Intermediate level events is expressed
as condicional belief functcions {Belaln, leclh, ete.). The analysis outlined
here requires certain independence assumptions. Assumptions 1-4 must be
satigfied within each single chain (e.g., [=F-H). MHoreover, separate argu-
ments for & given conclusionm {i.e., lines of reasoning that do not share a
common hypothesis space except for the conclusion) are based on independent
evidepnce (i.e., D+F=H and E~+F-H are not ipdependent because they share the ar-
gument from F to H, but each iz independent of A-B-C-H, Moreover, DI~F and E«F
are independent].

The procedure for analyzing an argument such as that given in Figure 2 is as
follows. First, chain up each argument individually until encountering a node
shared with another line of argument. Then combine, using Dempster’s Bule,
all belief functions for a given node. Contimue chaining up and combining un-
til the top-level node is reached,

For example, in Flgure 2, we would propagate the bellef functien Belp through
the chain D+F te obtain belief function Belp) over F. Then propagate Belg
through E<F te cbtain Belp, over F. Combine by Dempster’s Rule, obtaining
Belp. Propagate through F+H to obtain Bely; over H. WNow, propagate Bel,
through A-B-+C-H to cbtain Bely,. Combine these using Dempster’s Rule to ob-
tain the final belief function Bely.
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APPENDIE C: TUNCERETAINTY IN DATABASE SYSTEMS

In this section, we turn to aspects of currently existing database technology
which contribute to the design of an evidential database for intelligence
analysts, In the course of this discussion, we ask what methods exist or have
been proposed to represent incomplete or uncertain data. ﬁl:hnugh the most
prominent database formats and guery languages in use today offer little or
nothing to assist users in representing uncertainty, nevertheless, con-
siderable technical attention iz being given to the problem, and a variety of

apparently viasble appreoaches have been defined.

The situation Iz gquite different with respect to a second question: what
methods exist or have been proposed to represent the evidentiazl srguments that
underlie such representations of uncertainty? Few researchers have addressed
the issues of model building and structuring of evidential arguments that are
essential to the intelligence analyst's understanding of his data. To have
the capability of representing, storing, and retrieving mumerical probabil-
ities (or possibilities, or degrees of belief) corresponding to different
hypotheses (e.g., about the identity of the perpetrators of & terrorist act)
is of some use. Of far greater value, we believe, is the ability to repre-
sent, record, and retrieve the reasons and assumptions upon which these
azgsessments depend, and to manipulate such reasons and assumptions in a

variety of ways to resolve conflict and construct a convincing evidential ar-

E'L.I]]].B'I:I.t-

Our discussion is in two parts: (1)} a brief review of the relational model of
data and alternative ways of organizing data (network, hierarchical}; and (2}
recent efforts to medify or extend the relational system te include repre-

sentations of uncertainty,

C.1 The Basic Belational Hodel

& number of different ways of organizing large databasges have been developed,
each with its advantages for certaln elasses of problems and dissdvantapges for
others. In theory, structure iz a crucial'iaaue, affecting design of the data
manipulation langusge, ineluding the types of inferemtisl and uncertainty-

related queries that can be posed. In practice, selection of a data structure
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may make implementation of a particular user operation easier or harder, but
never makes it impossible.

Most prominent among representation schemes at the user level arve hierarchi-
cal, network, and relational approaches. The relational approach is by far
the best developed, and the one for which there has been the mest work on
adaptations to deal with incomplete information. In the next subsection, we
examine modifications te the relational appreoach that allew representation of
incomplete information. As a prelude, we present an overview of the rela-

tional approach,

In a relational swvstem, the fundsmental objects are two-dimensiomal tables
knovn as relations. By convention, the columns correspond to the asttributes,
ot dimensions aleng which the data are characterized; and the rows are the
records, corresponding to the different objects or cccurrences being modeled
in the database. An attribute or set of attributes whose wvalues uniguely
identify the records in a relation may be used as a key. All records are as-
sumed to be distinect; no duplicates are allowed.

To be useful, a database must not only store information, it must permic
access and panipulation of the informationm. The user compmunicates with the
database management system by means of an sccess language. The access lan-
guage allows the user to manipulate relatiems to form other relations, and to

poze gueries to the database management system.,

The chief advantage of the relational model ig that the access language can be
data imdependent: the language need only address the general ocperations on
relationg and their elements, not details of data storage. The access lan-
guage may be defined and viewed in different ways, but & common approach is to
construct an algebra based on five primitive operators., These five operators
form new relations from existing relations., The first three are the usual set
theoretiec operators, union, sef Jifference, and carcesian product, Union and
set difference must be restricted only to relatlions that are union compatible,
that s, relations having attributes which can be placed in one-to-one cor-
respondence with each other, such that each attrlbute in one relation has the
same domain as the corresponding attribute in the other relation. Cartesian

product is unrestricted in application. The fourth operator, projfection,
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forms a new telation by dropping all but a specified set of attributes, then
removing duplicate rows, Finally, cthe selecrion operator =zelects all records
for which the wvalue of a specifled logical expression has truth value T (e.g.,
select all records for which AGE takes on values between 40 and 63). Based on
these five operators, other useful ones can be defined, A common one Is Join,
which concatenates rows of one relation with rows of another, based on a logi-
cal expression relating an attribute of each. An example of the natural Joirn
operator Is shown in Figur@l (other joins are possible, based on logical
comparisons other than equality).

We might think of any of these five operaters as a type of query, but seles-
tion most closely resembles the intuitive meaning of the term gquery. Thus,
the kinds of queries supported by a relational database system include gques-
tlons such as, "find all records for which country of orligin is France," or
"for which individuals is the elty of birth the same as the city of
residence?” GSelectlien followed by projection allews the following kind of
query: "Show me the employee mumber, salary, and length of service for all
employees in the chemistry department.® A final type of query results not im
a relation {(or set of records), but in a truth value (T or F}. An example of
such a "yes-no" query ls, "are there any contacts whe are fluent in Bussian
and live in Baltimore®®

C.2 Incomplete Information in the Relatiopnal Model

Uncertainty in its various forms is ubiquitous in data taken from the real
world, FHevertheless, until recently datsbase theorists have devoted little
attention to studving the representation of uncertainty in databases and the
special requirements it imposes on structure and Information acecegs, This
lack of attention has been reflected in database software products, which
typleally do not provide support for incomplete, ambiguous, or imprecise data,

Within the relational model, seme kinds of uncertalnty are handled more easily
than othera, Most authors make the assumption that the number of sttributes,
the attributes themselwes, and the attribute domsins are known precisely.
(That iz, we know that there are 235 attributes, that one of the attributes is
BALARY, and that the domain of SALARY is the set of nonmegative integers).
Thus, the only allowasble kind of missing information concerns the values of
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attributes for particular records. Because the key field is supposed to be a
unique identification field for a record, it is assumed that the value of the
key is known (this restriction applies only to base relations; relatioms
derived by means of operators such &s projection may contain uncertain values
in the key)., Implicitly, therefore, it is also assumed that the number of obh-
jeets (records) and their identify are not uncertain.

C.2,1 Hull wvalues, Codd (1979} develops extenslons of the relationsl slgebra
to deal with pull values, where a null wvalue (denoted by #) 1= taken To mesn
"walue at present unknown." Given that null walues are allowed to exist, the
data access language must be extended to deal with them., Specificslly, =
means must be provided for determining the truth walues of expressions con-
taining mull values, and the operators must be redefined so that they operate

on relations containing null values.

Codd defines a three-valued logic for determining the truth wvalue of expres-
sions containing nulls, The value of any logical expression may take on one
of three values: T (true), F (false}, or # (unknown). Truth tables for logi-
cal operators, as well az yules for set inclusion, are based on the null sub-
stltution principle. The null substitution principle sztates that an expres-
gion has the value # if and only if substituting (possibly distinet) non-null
values for each occurrence of # in the expression cam result In either the
valus T or the value F. Thus, the expresslion #T has the value T, because
substituting either T or F for # ylelds T. On the other hand, the expression
#AT has the value #, because gubstituting T yields T, but substituting F
yields F.

The five operators of the relational algebra are extended based on the mull
substitution principle and om an extension of the rule for removing redundant
tows. For purposes of removing duplicate rows, & mull in one row is con=
sidered equal to a mull in amother (im comtrast to a truth value of # for the
expression # = #, With these rulea, the extensions of union, set difference,
cartesian product, and projection are well-specified. The select operator,
however, depends on the truth value of a logical expression. Two extensions
are possible, one that selects only those records for which the expression
evaluates to T, and another that selects only those for which the expression
does not evaluate to F. Codd resolves this indeterminacy by defining "true"
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and "maybe" wversions of the select operator. (His maybe version selects only
these records for which the expression evaluates to #; selecting non-F records

requires performing a true select followed by & maybe select.)

€.2.2 Lipski's ipformastion system. In Codd's system, we either know the

value of an attribute exactly or we know nothing about it. Frequently,
however, an intermediate level of informatiom is available., We now turp to
one kind of generalization of Codd's relatiomal algebra with null wvalues,
Lipski {1979} considers the case where the walue of each attribute is known to
lie within a specified subset of the attribute domain. A known value cor-
responds to a singleton, and Codd’s mull value corresponds to the entire
domain, Lipski’s systesm allows knowledge Intermediave berween these two ex-

tramas.

The only kind of incomplete informationm that can be represented in Lipski's
gystem iz knowledge that a given attribute of a given record is constrained to
lie within a subset of the attribute domain. In particular, informatien such
as TAX < SALARY cannot be represented (unless, of course, one of TAX or SALARY
iz known exactly, in which case thiz information would be eguivalemt to con-
straining the sther te lie within a subset), Moreover, an attribute value
either is possible or it is mot--there is no way of representing degrees of

possibilicy.

Lipski is concerned with developing a logic for queries in a database consist-
ing of a single relation. He is not concerned with the operators for forming
new relations out of existing relations (except, as we shall see, for selest),
For Lipski there are two kinds of queries, corresponding, in our language, to
the select operator (find all records satisfying a given property) and to yes-
no gqueries (does the following property held?). Intersection and unlen can
also be expressed in Lipski's language (as AND and OR, respectively).

However, projection, divizion, and carteslan product cannot be expressed,

For every object and every attribute, then, the system stores mot a unlque
value, but a zubzet conzisting of all the values which the attribute could as-
sume for the given object. Lipski is concerned with extending the usual logi-
cal definitions for a query language to this case of incomplete information.
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There are two natural rezponses to a query in an incomplete information sys-
tem, For selestlion gqueries, the fivet is to liat the set of cbjects for which
the property is lmown to held; the second is to list the set of objects for
which the property might hold, or for which the propercy is not known not te
hold. These two responses define respectively the lower and upper values of
a selection query. For yes-no gqueries the lower and upper walues are defined
analogously. GCodd also considers a third query response, corresponding to
what he calls the "intermal interpretation™ of a query.

Lipski defines a modal logic for dealing with queries In an incomplete infor-
mation system. The “"possible worlds™ of Lipski's modal logic are the possible
complecions of the database, A completion of a database is a complete infor-
mation system (L.e, all attribute wvalues are definite) formed by selecting,
for each record and each accribute, one of the set of possible walues for the
attribute, The lower walue of a selection query is the set of all cbjects for
which the query is satisfiled in all possible completions of the database; the
upper value iz the set of records for which the query is satisfied for some
completion of the database,

Thus, Lipski's system allews the formulation of queries such as "list all
sources who are known te have contacted us within the last f£five years," or
*list all employees who possibly earn more than $30,000." Indeed, the
capability for an internal interpretation of queries allows combinations such
as, "list all contacts whe are known to be fluent in Bussisn and who may have
vigited the Soviet Unlon,®

For atomic walues, the internsl interpretation is the same as the lower walue.
For & compound guery, such az, finding all red or blue objects, there is &
difference. The lower value would retrieve all objects whose color is known
to lie in the set {red, blue}. In the internal interpretation, the lower
values of the atomic gueries are processed a5 in ordinary logic. Thus, thes
result would be blus. (The name "internsl interpretation" comes about because
the response is a statement of the system's internal knowledge, rather than

about the external world being modeled).

Lipski's logic is mot truth-functiomal (i.e. the truth of an expression canmot

be determined solely from the truth values of its components). He notes a
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paradexical element in Codd's truth-functional three-valued legle. Consider,
for example, the expressien pA=p, where the value of p iz #, In Cedd's logle,
the truth value iz unknown, az iz the truth value of the conjunctien of any
two nmull-valued expressions, Honetheless, we know that p and not-p cannot
both be true, Thus, argues Lipski, the expressien pA-q should have truth
value # when the expressions p and g are unrelated, but when g=p, the value of
the expression should be F. In general, Lipski recommends modifying the null
substitution principle in the following way: when substituting for null
values in an expression, always substitute the same value for different occur-
rences of the same variable (distinct values may be given te distinct
wariables).

The faet that the value of an expression cannot be determined by the truth
values of its components presents problems for cemputing query responses.
Fortunately, Lipski presents theorems by which arbitrary expressions can be
transformed into canonical forms from which the upper and lower values of
queries can be determined from the upper and lower values of the component ex-
pressions.

C.2.3 Fuzzy constraints on attribute values., Prade (1984) generalizes
Lipski's approach using ideas from Zadeh's possibility theory. In Lipski's

system ettribute values are constralnmed to lie in crisp subsets of the at-
tribute domain. That is, a given value either is or is not possible--there is
ne room for degrees of possibility. Im Prade's system, although the attribute
domains are crisp sets, attribute wvalues are fuzzy subsets of the attribute
domain. Thus, Prade allows for differing degrees of possibility for different
attribute values.

As with Lipski, Prade is concerned with a query language for a database system
with incomplete informatiom. Since he is concerned only with a single rela-
tion, he does not consider the full relational algebra (i.e. carteslan preduct
or join). Rather, he considers the problem of how to respond to select or
yves-no queries when information about attribute walues Is fuzzy,

Prade's fuzzy relational database consists of a single relation, with rows
corresponding to records and colurms corresponding to attributes. The walue
of attribute I for object x is a peossibilicy diseribution (%) which maps
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elements in the attribute domain Dy into the interval [0,1]. A value of 1 for
Ei{xjtu} means that u is undoubtedly possible as a value for atiribute 1 en
object x; a value of zero means it is impossible; and intermediste waluez mean
intermediate degrees of possibiliecy. (Note that Hii“j(u} = 1 does not mean
that u Is the value; it simply means it i{s definitely a possible walue.)} If
an attribute’s value iz known to lie in & crisp {i.e. ordimary) subset, then
i) iz the characteristic functiom of that subset {egual to 1 for elements
of the subset, and zerc otherwise}. Thus, Lipski’s representation is a spe-
cial case of Prade's,

The fermulatlion of locemplete information in terms of possibility theory al-
lows expression of a different kind of incomplete information than "value at
present unknown." By specifying LT 0, we may represent information of
the form, "attribute i does not apply to object x," (since all values in the
attribure demain have possibility zerc). Prade requires that if an ateribute
applies to a given object, then there exists at least one value that is un-
doubtedly possible ({.e. the maximum value of "3 (%) iz either 1 oxr Q). This
rules out the situation where attribute i is enly "partially applicsble® to

object x.

Prade extends Lipaki's results on the lower and upper wvalues of gueries to the
case of fuzzy information. For a selection query, Lipski's upper walue is the
{crisp) set of those objects which are not excluded from having the property;
in Prade’s system, the upper value is a possibllity distribution for the fuzzy
set of responses to the query. Correspondingly, Lipski's lower walue is the
terizsp) set of those objects which are known to satisfy the gquery; in Prade’s
system, 1t is the neceszity discribution corresponding to the above-mentioned
possibility distribution (the necessity measure is defined as 1 minus the pos-
sibility of the complement, and tskes on the value 1 if and only if the object
must satisfy the gquery).

Frade's system has several advantages over Lipski's. First, he claims that
the min/max operators are easler to manipulate than the "possible completions®
semantics of Lipski's modal logic. GSecond, Frade's system can handle more
complex types of dependencies than can Lipski's system. Any kind of fuzzy
relation between two or more attributes can be modeled (including the pos-
sibiliety that for some values of actribure I, artribute j may be
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inapplicable), Finally, Prade's system supports a more expressive gquery lan-
guage, Specifically, one may ask not just for objects whose values are known
to be possible {"i{x] = 1}, but for objects whose walues are at or sbove a
specified level of possibility,

Prade assumes that possibility discributions ave already specified as numeri-
cal quanticies; hiz system manipulates these numerical possibility distribu-
tions to compute possibilicy and neceszlty measures as query responses. Prade
doea not consider the translation of linguistie terms (e.g. "tall® man) into
posaibility distributions (e.g. a possibility distribution for the HEIGHT at-
tribute with possibility values x{5°4") = 0; w{5"10") = .5; n(6"3") = 1.0},

C.2.4 A fuzzv velatiopal alpebra. On the surface, Buckles and Petry (1982)

would zeem to be addressing the same problem as Prade: generalization of
Lipski's framework to incorporate fuzzy information about attribute values.
However, the authors actually address different aspects of the incomplete in-
formation problem. Prade generalizes Lipski to allow attribute values to be
fuzzy (not erisp) subsets of the attribute domains., He is concernmed with
responiding to selection and yes-no queries when attribute values are fuzzy
gets. In contrast, Buckles and Petry retain Lipskl's requirement that at-
tribute walues be modeled as crisp sets. They are concerned not with a guery
language, but with a relatiomal slgebra ceonsisting of commands such as projec-
tlon, unlen, intersection, and join. Their use of fuzzy set theory 1:.th¢ in-
troduction of a fuzzy similarity relation on the cross product of the at-
tribute domain. The similarity relation is used for the operation of removing
redundant tuples from the datsbase. For purpeses of removing redundant
tuplea, two attribute values are considered equivalent if their similaricy
exceeds a user-specified threshold. They require the similaricy relation o
satlsfy a form of transitivity in order te ensure uniqueness In the resultant

relation,

Buckles and Petry state that operators are allowed te have a conditional
clauge (i.e, form the intersection of RELATION] and RELATION2, where
DEPARTMENT=CHEMISTRY). However, they do not consider the issue of the truth
value of expressions containing fuzzy-set-valued attributes, and indeed, all
their examples of conditional expressions invelve attributes with known
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€.2.5 _Another approach to a fuzzry gquery languags. Another approach to incor-
porating fuzzy logic into relational datebase theory is developed by Evieli,

Zviell eriticizes Buckles and Petry because of the restriction that attribute
values must be described by crisp subsets; like Prade, he allows fuzzy at-
tribute values. But, unlike Prade, he considers both a relatlional algebra and

a query language.

Zvieli's relational algebra and query language are based on FFOL (fuzzy first
order logic). FFOL incorporates "fuzzified" wversions of the logical operators
of first-order predicate calculus (Section 2.7 discusses how to "fuzzify”
logleal expressions). Additional operators are {ncluded, called transformer
cperators. These operators modify the possibility distribution associated
with an expression (e.g. concentration, defined by BCoR(a) ~ pi, is a pos-
sible interpretation of the adjective "very®). Finally, FFOL contains a tran-
gitive closure operator (the transitive closure of an eXpression is the com-

Junetion of the expression with itself infinitely many times).

His relational algebra consists of operators union, intersection, differemce,
cartesian product, projection, selection, joln, diwvision, and assigmment; as
well as the relational tramsformer operators. 2Zwieli proves that his rela-
tional algebra is complete, in the sense that it can express anything express-
ible in his relational calculus, or query language.

Zviell expresses fuzziness in a different way than does Prade, at the record
level rather than at the individual attribute level, Consider, for example, a
databage with relatlion CONTACT-LOCATION, with fields CORTACT-ID, COUNIRY-OF-
ORIGIN and CURRENT-RESIDENCE. In Prade's system, attribute values may be
fuzzy sets. Thus, the COUNTREY-OF-ORIGIN of Contact-3B35 might be expressed by
the possibility distribution [(France, CGermany, Austria); (1, .B, .2)) (i.e.
France is undoubtedly a possible country of origin; Austria is possible only
at the .2 level). In contrast, Zvieli expresses fuzziness at the relation
lavel, by specifying a fuzzy membership function of each object in the rela-
tion. Locking at just the projection of the CONTACT-LOCATION relation on the
attributes CONTACT-ID and COUNTREY-OF-ORIGIN, Zvieli would express the same in-
formation as described in Table ZVIELI. In contrast to Prade, Evieli would
gay that (Contact-3EB5, Austria) belongs te the projection of CONTACT-LOCATION
at level of possibilicy .2.
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Table ZVIELI: Structure of & Fuzzy Relation in Zvieli’'s system

CONTACT-1ID COUNTRY-0F-0RIGIN H
Contact-3185 France 1
Contact-385 Germany B
Contact-385 Austria ol

Zvieli's representation is more expressive, but at the cost of a wastly
greater storage regquirement. In large systems with a high degree of fuzzi-
ness, his representation would quickly become unworkable,

To zee this, note that It ls quite naturalin Zvieli's system to represent the
knowledge that Contact-385 no longer lives in her country of origin. We would
simply assign zero possibility to the tuples (Contact-385, France, France),
vContact-363, Germany, Germany), etc. Hote that, e.g., France might scill
be a possible current residence: we might have p(Contact-3E53, Germany,
France) = .BE. In Prade's system, we can express contraints by defining &
separate constraint relatlon, defined as a fuzzy subset of the cross product
of the ate;ibuta domaling, We can thus speclfy that France is not & possible
attribute for CURREHMT-RESIDEHCE when COUNTEY-OF-ORIGIHN = France. However,
Prade discusses only constralnts between two attrihu%%. Constraints among
three attributes would be required to represent knowledge that the sbove con-
traint applied only to Contact-383,

The cost of the greater expressivepness of Zvieli's system is that he must
store the entlire joint possibility distribution on CURRENT-RESIDENCE and
COUNTRY-0F-0RIGIN, As the number of attributes im the relation increases, the
storage load of Zvieli's system grows exponentially, while that of Prade's
system grows linearly. For example, if there are ten contacts, each with
three possible values for COUNTREY-OF-CRIGIN and CURRERT-BESIDERCE, ninety
(10x3#*3) tuples, with four fields each {(three attributes and a possibility),
muist be stored (unless some tuples have zero possibility). The total storage
would be 360 fields. Prade must store only ten tuples, although the COUNTRY-
OF-0ORIGIN and CURRENT-RESIDENCE fields of each will have three (<value>,
<possibility>) palrs. The result is ten tuples with 1+6+6 fields each, or 130

fields, The problem becomes more acute as the size of the tuples increases.
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Clearly, Zviell’s system 1s unworkable in a system of any slze unless the
amount of fuzziness is strictly controlled, Indeed, he eriticlizes the ap-
proach of Buckles and Petry because merging similar tuples "increases the fuz-
ziness of the data (we prefer to control and minimize fuzziness)." However,
he never says how fuzziness can be "control[led] and minimize[d]."

C.2.6 A general fuzzy relatjonal database gystem: Representatfon of fuzzy
Linguistic expressions. Zemankova-Leech and Kandel (1984) develop a fuzzy
relational database system that is similar to Prade’'s system, but more general

in scme respects.

Like Prade’'s system, their system can represent fuzzy data, manipulate fuzzy
logical expressions, and compute possibility and necessity measures for satis-
factlon of queriesz, They also derive sompe fuzzy relational operators based on
fuzzy gimilarity and prowimity relations (these correspond to operators such
as IS5, GREATER THAMN, ete.}. Finally, theilr system that can process lingulstic
expresslons (e.g, "John 1s wvoung. "),

Fuzzy relational operators allew derivation of properties based on their
similarity and proximity to other properties. Anm example given by Zemankova-
Leech and Kandel concerns deriving the possibility that Bob's halr is brown
from the possibilities that it isz red or blond, and the similarity of those
colors to brown, Assume that Bob's hair is blond with possibility .3 and red
with pogsibility .7 (note that there is no possibility equal te 1; this
reflects the fact that no color completely describes Bob's hair)., If blond is
& gimilar to brown and red is .5 similar to brown, then the possibility that
Bob's hair is brown is given by max[ .3x.4, .7x.5 } = .35.

The popularity of fuzzy sets has stemmed in large part from their promise for
representing the imprecision in natural language. Of the authors considered

here, Zemankova-Lesch and Kandel are the only ones to propose a mechanism for
processing linguistic expressions in a fuzzy relational database, To do this,
they require a relationm that "translates”™ any given linguistic expression inteo
a possibility distribution. For example, they give a relatien YOUNG which as-
signs a possibility to each age {e.g. 10 has possibility 1; 40 has possibility

).
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The sztorage requirements for such a scheme would be emormous, if the system
were to be able to handle & large number of linguistic expressions. Moreover,
although they do recognize that users might want to customize these
"translation® relations, they do not consider that a single user might require
different meanings for the same term, depending on context. Consider for ex-
ample, the different connotations evoked by the phrases, "young business ex-
ecutive," and "young newlyweds," or by the phrases, "aging Politbure member,"
and "aging terrorist."

C.2.7 A statistical approach to incomplete information. An alternative ap-

proach to incomplete information is te allew for prebabillistie Information
about attribute values, Wong (1982) conslders a framework within which a mum-
ber of different typez of information can be represented. He considers a
database consiating of & single relationm, He presents results for two types
of gquery: querias that select sets of objects and queries that extract wvalues
(projection iz an example of the second type of query).

Wong creates a taxonomy, classifying incomplete information databazses by the
type of incomplete information and whether there iz prier information abeut
attribute valueg, There are two types of Iincomplete information. In the
first type, the obsgerved database is a disrorrion of the ideal database,

There is a known distertiem function which transforms a vector of attribute
values in the ideal database to the wvector (possibly lower dimensional) of ob-
served attribute values., Examples are when material and labor costs have been
collapsed into total cost, or when height is required in inches, but is given
only as tall, average, or short. In the second type of incomplete informa-
tion, the observed attribute walue is a realization of a random varlable whoze
diztribution depends on the true valus of the attribute (and iz assumed to be
independent across objects, conditional om the true walue). HNote that the
noise may be dependent within objects. Thus, 1f we have only last year's
sales and last year's salaries, we may model this year's sales and salaries as
random increments from last year's. Conditional on this year's sales, the
values for last vear's gales are assumed independent, but sales and salaries

may be dependent.
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Wong considers two cases with respect to prier information, The first iz neo
prior infermation., The second case is that the all vectors of attribute
values are a priori independent and identically distributed.

Wong's formulation allews for a rich representation within the types of incom-
plete information it supports, but it cannot handle the full range of uncer-
tainty wodeled in Lipski's system. For example, it cannot handle the situa-
tion where more is known about a given attribute for some objects than for

others {(e.g. SALARY is missing for Smith but net for Jones).

For selection queries, in the no prieor/known distertion function case, Wong's

system would respond with Lipski’s lower and upper values.

For the other three cases, where probabilistic information is available, Wong
derives statistical tests based on trading misses and false alarms. When
there is no prior information, a likelihood ratio test is used to decide
vhether an object satisfies the criterion provided in a gquery. Uhtﬁ there is
prier information, lesses for misses and for falze alarms are specified. The
minimum expected less response te a query lz to report that an object
satisfies the guery if the posterieor (to observing the data) probability that
it patisfies the guery exceeds a threshold depending on the ratio of the tweo
logs walues. Lipski's lower (upper) valus corresponds to avoiding false
alarms (misses) at any cost. Wong's framework allows investigation of cases

inctermediate between these two.

In selection queries, the system is to find which objects satisfy the given
eriteria, and the response may be simply an cbject identifier. In Wong's
second type of query, the response will be attribute walues or functions of
attribute values, Wong sugpests using the maximum likelihood estimate of the
value when there iz no prier information and the mode of the posterier dis-
tribution when there is prior information., Weng does not discuss the issue of
representing the range of uncertainty associasted with a query. Such a repre-
sentation would be necessary in many intelligence applications, and useful in

mOBL.

In the case of selection queries with prior information, the ratle of the
misa/false alarm loss values is directly related cto the posterior probability
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that will be accepted as a positive response to the gquery. Thus, varying this
ratio will allew selection with different degrees of stringemcy. Indeed,
users might feel more comfortable specifying queries in the form, "select all
individuals for which CITIZEWSHIF = GREECE with probability greater than .7,"
than specifying miss/false alarm tradeoffs directly. In general, it would be
useful for the results of a query to include both the items satisfying the
query and their posterior probabilities.

When there is no prior Informatiom, a similar type of sensitivicty analysis can
be performed by varving the p-value for acceptance in the likeliheood ratio
test. Indeed, if equal priors are assumed, the p-value corresponds to the
posterior probability.

For Wong's second type of query, again it would be useful to provide a repre-
sentation of the uncertainty associated with an estimate. This could be ac-
complished by providing a confidence interval about the maximem likelihood es-
timate (in the case of no prior information), or a credible interval about the
pesterior model (in the case of pricr information).

C.2.8 Susmary

The work discussed im this section covers a very specific type of uncertainty:
unknown values for fixed unknown objects. Frade allows an "attribute does not
apply” designator; Zvieli allows attributes that only partially apply. HNone
of the authors considers uncertainty about what are the relevant attributes,
In general, & unique, certain key field iz required, at least in base rela-

tions.

The earliest work (Codd, 1979} allows mull values, with meaning "attribute
value at present unknown.” A tumber of suthors have considered generalizing
the query language of Codd's system. Lipski (1979) extends Codd's query lan-
puage to deal with finer gradations of information than Cedd's "ewverything or
nothing" framework. Specifically, he allows the case where attribute values
are subsets of the attribute domains; within his swystem, singletons correspond
to complete information, and the entire domain corresponds to Codd’'s null
value., Lipski provides a mechanism for ¢¢npﬁcing lower and upper responses to
queries, corresponding to what is known and what is possible, respectively.
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These systems are general, in that the value may be unknown due to impreci-
sion, Incompleteness of evidence, or stochastie uncertainty. Hewvertheless,
they do net allow representation of degrees of uncertainty. One cannot repre-
sent the knowledge that while several wvalues are poseible, one may be in some

sense a better match than the others,

In extending Codd's and Lipski's work to allow gradations of uncertainty, most
authors have concentrated on representing imprecision, by means of fuzzy set
theory. We have reviewed a sampling of work in this area (Prade, 1984;
Buckles and Petry, 1982; Zwvieli; Zemankova-Leech and Kandel, 19B4). In
Prade's svstem, attribute values are fuzzy subsets of the attribute domain.

In addition te the queries allowed by Lipskl, Prade allows the user to ask for
those recerds for which a given condition holds with a certain level of pos-
sibility. Most suthors deal with mamipulating the mathematical structures of
fuzzy set theory; only Zemankova-Leech and Kandel treat the important issue of
"translating" back and forth between linguistic expression and possibility
distributions. This, we feel, iz & key problem limiting the success of fuzzy
get theory. Like other fuzzy set theorists, Zemankova-Leech and Kandel fail
to provide an adegquate method for accomplishing this.

Wong hes treated snother aspect of uncertainty im attribute walues: that of
probabilistic uncertainty. He treats querying a database with incomplete in-
formation as a problem in statistical estimatiom. His approach is ideally
sulted to the case in which uncertainty in attribute values can be viewed as
arising from a probabilistic process generating the uncertain values., (It is
important to emphasize that Wong's approach is not limited to cases where we
believe attribute walue actually are generated probabilisclically; it applles
when we believe the analegy flts well enough for practicsl purposes), Wong's
approach allows the user to ask for cbjects satlisfving a cricerion with a
given probabilicy (in the case where there is prior information); it also al-
lows an explicit tradeoff between false alarms and misses,

Although we are not aware of any work in this area, it is clear that on exten-
gion of Lipski's model could be developed to handle the problem of incemplete
evidence, In such a model, attribute wvalues would be characterized not by
probability or possibility distributions, but by Shaferian bellief functions,
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Queries would retrieve objects for which the degree of support or plausibility
for a hypothesis was above a glven level,

¥While useful, the efforts discussed in this section address only part of an
analyst’s problem. The analyst reguires support that goes bevond the level of
representing and manipulating numerical measures of uncertainty, to the level
of support in developing the numbers themselves., This entails a system which
can help the user in structuring an evidentlal argusent, and consfructing wam-
berical assessments of uncertalnty from the reasons and assumptions on which
they are based. The 5elf-Reconciling Evidential Database described in Seclen
3.0 will, we argue, provide the analyst with both the capabllity for repre-
senting and manipulating uncertainty, and the support needed for assessing the
numerical Inputs for the system.
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